ARTIFACT
EVALUATED
zusenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

FIXREVERTER: A Realistic Bug Injection Methodology
for Benchmarking Fuzz Testing

Zenong ZhangT, Zach Patterson’, Michael Hicks*, and Shiyi Wei'

TUniversity of Texas at Dallas

Abstract

Fuzz testing is an active area of research with proposed im-
provements published at a rapid pace. Such proposals are
assessed empirically: Can they be shown to perform better
than the status quo? Such an assessment requires a benchmark
of target programs with well-identified, realistic bugs. To ease
the construction of such a benchmark, this paper presents
FIXREVERTER, a tool that automatically injects realistic bugs
in a program. FIXREVERTER takes as input a bugfix pattern
which contains both code syntax and semantic conditions.
Any code site that matches the specified syntax is undone
if the semantic conditions are satisfied, as checked by static
analysis, thus (re)introducing a likely bug. This paper focuses
on three bugfix patterns, which we call conditional-abort,
conditional-execute, and conditional-assign, based on a study
of fixes in a corpus of Common Vulnerabilities and Expo-
sures (CVEs). Using FIXREVERTER we have built REVBUG-
BENCH, which consists of 10 programs into which we have
injected nearly 8,000 bugs; the programs are taken from
FuzzBench and Binutils, and represent common targets of
fuzzing evaluations. We have integrated REVBUGBENCH into
the FuzzBench service, and used it to evaluate five fuzzers.
Fuzzing performance varies by fuzzer and program, as de-
sired/expected. Overall, 219 unique bugs were reported, 19%
of which were detected by just one fuzzer.

1 Introduction

Fuzz testing (a.k.a. fuzzing) has proved to be surprisingly suc-
cessful at discovering security vulnerabilities. For example,
AFL [1], one of the most mature and widely used fuzzers,
has an extensive trophy case. This success has spurred re-
search toward addressing fuzzing’s weaknesses, with dozens
of published improvements in the last few years [2].

Most proposed fuzzing improvements are judged empiri-
cally. A proposed improvement’s implementation is evaluated

*Work done prior to starting at Amazon.

* University of Maryland and Amazon®

by running it on a set of target programs, comparing its per-
formance against that of one or more baseline fuzzers.

A key question is what performance measure to use. One
popular measure, employed by Google’s FuzzBench [3], is
code coverage; if a fuzzer A (the improvement) is able to
generate tests that execute more distinct lines/branches in a
target program than the baseline B, then one could argue A
will find more bugs. Multiple studies have been performed
with the goal of understanding the relationship between code
coverage and bug finding [4-6]. Unfortunately, a recent study
finds that while there is a strong correlation between the
coverage achieved and the number of bugs found by a fuzzer,
there is not strong agreement on which fuzzer is superior if
coverage is used to compare the fuzzers [7].

Another popular measure is to count the number of dis-
tinct, crash-inducing inputs generated, a.k.a. unique crashes.
Since two different inputs can easily trigger the same bug,
researchers often employ deduplication heuristics; two popu-
lar heuristics are AFL’s “coverage profiles” and fuzzy stack
hashes [8]. However, a study by Klees et al. [9] showed that
both heuristics could still yield many false positives (many
“deduplicated” inputs still trigger the same bug) and also some
false negatives (“deduplicating” an input can actually remove
evidence of a distinct bug). For one program, their study found
that a result that appeared to show fuzzer A was superior to
baseline B disappeared when ground truth was used, rather
than “unique” crash heuristics.

1.1 Developing a Fuzzing Benchmark

Klees et al. recommended developing a benchmark of buggy
programs with which to empirically compare fuzzer imple-
mentations [9]. Systematizing their advice, we identify four
goals for an effective benchmark suite:

G1 it should use relevant, real-world target programs;

G2 those programs should contain realistic, relevant bugs
(e.g., memory corruption/crash bugs);

G3 these bugs should be triggerable in a way that clearly in-
dicates when a particular bug is found, to avoid problems
with deduplication;

G4 the benchmark should defend against overfitting.

There are several extant fuzzing benchmarks, but none
meet all of these criteria. UNIFUZZ [10] comprises many
real-world programs with known bugs, satisfying G1 and G2.
But triggering a bug does not emit a telltale sign; instead,
UN1FUZzz distinguishes bugs based on stack traces, which
is unreliable per Klees et al. [9], thus violating G3. Google
FuzzBench also comprises dozens of real-world programs, but
many of them do not have known bugs; FuzzBench focuses on
measuring code coverage, not bugs triggered. For those pro-
grams that have bugs, it uses unreliable means (stack traces)
to distinguish them. The DARPA Cyber Grand Challenge
(CGC) [11] has well-identified (G3) and realistic (G2) bugs,
but its programs are synthetic, violating G1. Magma [12] sat-
isfies G1, G2, and G3: it comprises real-world programs with
relevant bugs injected by hand so that when a bug is triggered,
it gives a telltale sign.

An issue with any benchmark, and with each of these in
particular, is that it can be prone to overfitting (G4). Fuzzer
developers may start to employ heuristics and strategies that
do not serve the general goal of finding more vulnerabilities,
but instead simply aim to perform better on a particular bench-
mark [9]. A benchmark built around automated fault injection
can help avoid the overfitting problem and satisfy the other
goals, too: (1) bugs can be automatically injected into real
programs in a way that the bug signals when triggered, and (2)
the tool can be used to produce new, fault-injected programs
as often as needed, to prevent fuzzers from overfitting to a
fixed set of programs.

LAVA [13] is an approach for adding faults to a program
automatically, and LAVA-M is a collection of four programs
with LAVA-injected bugs, which has proved to be a popu-
lar evaluation target in the fuzzing literature [14—18]. LAVA
works by injecting code snippets that each consist of a branch
with an unusual condition; if the condition is true, the pro-
gram faults (with a telltale sign). Apocalypse [19] generalizes
this approach by injecting conditions that implement an error
transition system, with a fault induced when the final state
is reached. Both LAVA and Apocalypse arguably fail G2,
since the injected patterns do not resemble realistic bugs. For
LAVA there is also concern (noted by the LAVA authors [20])
that the injected pattern is easily gamed, reducing the benefit
of automating fault injection for evaluation purposes. Evil-
Coder [21] uses static dataflow analysis as the basis for in-
jecting realistic source/sink bugs, but as far as we can tell has
never been used at scale.

" FixReverter 1
Target ‘ |
Program
’ ‘ Syntax Static Reachability |
M;/tcher & Dependence
‘ Analysis |
Bugfix
Patterns ‘ |
Target Naive Bu .
Program w. ‘ Fiter 9 Bug Injector |
Injected Bugs ‘ |
[

Figure 1: The architecture of FIXREVERTER.

1.2 Our proposal: FIXREVERTER

This paper presents FIXREVERTER, a new fault injection tool,
and REVBUGBENCH, a benchmark we have produced using it.
To increase the realism of its injected faults, FIXREVERTER
employs patterns that match fixes of previous CVEs [22].
In particular, FIXREVERTER is instructed to find a pattern
that matches an observed fix, and then reverses that pattern,
aiming to undo the “fix” and thereby (re)introduce a bug.

Figure | depicts FIXREVERTER. It takes as inputs a pro-
gram into which to inject bugs, and descriptions of bugfix
patterns. Bugfix patterns have two components: a synfactic
pattern that identifies, via a grammar, code at a potential in-
jection site, and a semantic condition that indicates whether
reverting the matched code could lead to a crash.

Based on a study of 814 CVEs (Section 2) we have de-
veloped three bugfix patterns, which we call conditional-
abort (ABORT), conditional-execute (EXEC), and conditional-
assign (ASSIGN). The ABORT pattern matches a fix that
aborts continued forward execution if the condition is true.
One instance of this pattern is CVE-2017-8395 [23], shown in
Figure 2 (under the comment PR 21431), which returns early
if a pointer variable is NULL, in order to avoid subsequently
dereferencing it. The EXEC pattern matches a fix that adds
additional constraints to a conditional to prevent erroneous
execution of its body. The ASSIGN pattern matches a fix that
introduces a conditional assignment to a variable, to prevent
erroneous execution involving that variable in the code that
follows it.

For each pattern, FIXREVERTER first matches the syntax
of the pattern in the target program according to a grammar
(Section 3.1), thus identifying candidate injection sites (Sec-
tion 3.2). Then, for each candidate injection site that matches
this code pattern, FIXREVERTER checks the semantic con-
dition, which if satisfied means that reversing the fix will
likely result in a triggerable crash. It does this via a static
reachability & dependence analysis (Section 3.3). This analy-
sis first checks whether the injection site may be reachable
via a feasible program execution starting at an entry point
(e.g., main). For example, the NULL-check site in Figure 2 is

reachable from main through the orange call edges. Second, it
(inter-procedurally) checks whether there is dataflow from a
relevant variable or field to a possible dereference site. For the
example in Figure 2, the variable is uncompressed_buffer and the
analysis would detect that this variable flows to a dereference
within the fread call (through the blue dataflow edges). If the
analysis finds no dereference site to which a variable flows,
FIXREVERTER will not reverse the code pattern, since it has
no specific evidence that doing so will induce a crash.

After deciding the final set of bugs, FIXREVERTER injects
them (Section 3.4). For ABORT pattern, this means delet-
ing the check and return (or dropping a disjunctive clause).
For EXEC pattern, this means loosening the condition. For
ASSIGN pattern, this means removing the conditional as-
signment. FIXREVERTER’s injector avoids introducing new
branches that may be instrumented by the fuzzers and affect
their feedback, similar to Magma’s by-hand injections [12].

To avoid injecting uninteresting bugs which could fail too
easily, FIXREVERTER runs a naive bug filter. One possible
filter is the target program’s regression test suite—any injected
bug that fails the regression tests should be discarded. Another
strategy, which we used to develop REVBUGBENCH, is to
run the program with injected bugs using a fuzzing seed, and
we do not inject those triggered by the seed.

To report the specific cause(s) of a crash due to some input
I, we apply a novel triage procedure (Section 3.5). To have
clear indicators which injected bugs are triggered in a crashing
input, FIXREVERTER logs when the guards from the removed
and updated conditions hold. The triage procedure identifies
two kinds of cause: (1) an individual cause is a single bug
that is sufficient to produce the crash with 7, on its own; (2)
a combination cause is a set of bugs that must all be present
for I to crash. Sometimes a single input can induce multiple
crashes with distinct causes; e.g., input / produced by a fuzzer
when bugs A, B, and C are injected could triage to having both
A and B, individually, as causes (both need not be present, but
if either is, the program crashes).

1.3 A New Benchmark: REVBUGBENCH

We construct REVBUGBENCH (Section 4) by running FIXRE-
VERTER on 8§ programs in FuzzBench and 2 Binutils pro-
grams, all used in prior fuzzing evaluations (G1). In total,
nearly 8000 bugs are injected. We integrated REVBUGBENCH
into Google’s FuzzBench service to simplify its use in evalu-
ating fuzzers at scale.

We evaluated 5 fuzzers on REVBUGBENCH (Section 5):
AFL [1], libFuzzer [24], AFL++ [25], Eclipser [16], and Fair-
Fuzz [26]. In total, the fuzzers triggered 219 individual-bug
causes, 19% of which were detected by at most one fuzzer,
and 221 additional combination causes. Performance varied
by fuzzer and target program, with AFL++ doing the best
overall.

In summary, REVBUGBENCH contains 10 real-world pro-

int main (int argc, char *argv(]) {
copy_main (arge, argv);

}

bfd_boolean _bfd_elf_make_section_from_shdr (bfd *abfd,
EIf_Internal_Shdr *hdr, const char *name, int shindex) {

if (Ibfd_init_section_compress_status (abfd, newsect))

Aungeyosesy

}

bfd_boolean bfd_init_section_compress_status (bfd *abfd, sec_ptr sec) {
bfd_size_type uncompressed_size;
bfd_byte *uncompressed_buffer;

uncompressed_size = sec->size;

uncompressed_buffer = (bfd_byte *) bfd_malloc (uncompressed_size);
[Injection site

uncompresded_size = bfd_compress_section_contents (abfd, sec, m
ompressed_buffer, uncompressed_size)

return uncompressed_size = 0;

(

bfd_boolean bfdigetisectinﬁicontents (bfd *abfd, sec_ptr section,
void *localion, file_ptr offset, bfd_size_type count) {

}

return BFD_SEND (abfd, /bfd_get_section_contents,
(abfd, ségtiol tion, offset, count));

}

asuapuadaqg

static file_ptr cache_bread_1 (struct bfd *abfd, void *bUf, file_ptr nbytes) {

Crash site
nread = fread (buj, 1, nbytes, f); .

|

Crash!

;

Figure 2: Illustration of FIXREVERTER: CVE-2017-8395

grams from prior fuzzing evaluations, satisfying G1. G2 fol-
lows from the reversion of code patterns based on real CVE
bugfixes, and G3 follows from the injection logic that identi-
fies when a bug is triggered. There is the caveat that a reverted
fix is not provably triggerable because FIXREVERTER’s static
analysis is necessarily overapproximate, and moreover in-
jected bugs may interact in ways that the analysis did not
anticipate. Nevertheless, as a practical matter we find that
many injected bugs are triggerable by modern fuzzers, and
many more are not; moreover, our triage procedure allows the
root causes of a crash to be discerned. Finally, G4 is satisfied
because while fuzzers may overfit to a static set of injected
bugfix patterns, the use of FIXREVERTER allows REVBUG-
BENCH to be expanded with new patterns and programs, or
by creating benchmark variants using a sample of injected
bugs. We hope REVBUGBENCHs integration into FuzzBench
could ensure its continued use and evolution.

Contributions This paper made the following contributions:

¢ The identification of the conditional-abort, conditional-

execute, and conditional-assign bugfix patterns, defined
by a combination of code syntax and a semantic condi-
tion, discerned from a study of bugfixes of CVEs.

* A framework, FIXREVERTER, that automatically injects
bugs by reversing instances of the three patterns, detected
by the use of syntax matching and static analysis.

* A fuzzing benchmark REVBUGBENCH based on run-
ning FIXREVERTER on 10 programs taken from Binutils
and FuzzBench, and integrated into FuzzBench along
with a novel triaging algorithm.

* An evaluation that compares 5 state-of-the-art fuzzers
using REVBUGBENCH, with results that suggest its use-
fulness as a benchmark.

2 Bugfix Patterns

We inspected past bugfixes in the Common Vulnerabilities
and Exposures reports (CVEs) to find relevant bugfix patterns.
In particular, we studied 693 CVEs from six open source pro-
grams (Binutils [27], Tcpdump [28], libxmI2 [29], FFmpeg [30],
libarchive [31] and systemd [32]). We chose these programs
for three reasons. First, they are well studied in the fuzzing lit-
erature [9,15,26,33-37], and contain well-documented CVEs.
Second, most of their CVE records contain direct links to
the source code diff of the bugfix. Third, most of their CVE
records are reproducible and come with call stacks to help
understand the origins of the bugs and how the bugfixes work.
In addition, we also studied the 121 CVEs and bugfixes that
were used to construct the Magma benchmark [12].

For each CVE, we spent 10 minutes with the provided test
input, call stack, and code diffs to understand the cause of the
bug and the developer’s intention with the bugfix. For all of
the CVEs together, we tried to identify common patterns.

In the end, we used 170 CVEs from the 814 as a ba-
sis for three general bugfix patterns we call conditional-
abort (ABORT), conditional-execute (EXEC), and conditional-
assign (ASSIGN), which we discuss in detail shortly. Among
them, 10 CVEs were used as basis of two patterns. While other
patterns are possible, ABORT, EXEC, and ASSIGN represent
general, intuitive patterns to demonstrate the effectiveness of
FIXREVERTER. Indeed, bugfixes similar to them were con-
sidered in previous studies of bug repositories [38—40] and
automatic bugfixing tools [41-43]. We call these CVEs that
are the basis of the three patterns our bugfix dataset.

ABORT An ABORT fix is characterized by the addition of
an if-statement that checks that a variable (or path) involved
in a downstream dereference satisfies an invariant, and breaks
the flow of control (e.g., returns from the function) if it does
not. Such a bugfix prevents subsequent program execution
from dereferencing a pointer whose value is dependent on
the checked variable. Figure 2 shows an ABORT bugfix, as

1 bfd_boolean _bfd_dwarf2_find_nearest_line
2 (asymbol **symbols, /+other parameters+/)

3 |

4
s -if ((section->flags & SEC_CODE) == 0)

6 +if (symbols = NULL && (section->flags & SEC_CODE) == 0)
7

8 asymbol **tmp;

9 for (tmp = symbols; (*tmp) != NULL; ++tmp)

10

o}

12}

Figure 3: CVE-2017-8392 bugfix.

explained in Section 1.2. ABORT is the most common pattern
in our dataset, matching 155 CVEs. A generalization of this
pattern is the addition of a disjunctive clause to an already-
present aborting conditional block, e.g., if(p) return; becomes
if (q || p) return;.

EXEC An EXEC fix is characterized by the addition of a
conjunctive boolean expression to an existing conditional
statement (if, while and for) to check that a variable (or
path) involved in a dereference within the conditional’s body
satisfies an invariant. Such a bugfix tightens the condition
of executing the true branch of the conditional statement
which dereferences a pointer whose value is dependent on the
checked variable. Figure 3 shows the bugfix of CVE-2017-
8392 [44] with the EXEC pattern. In line 9, symbols is copied
to tmp which is dereferenced. The developer added a check of
symbols against NULL in line 6 to avoid the NULL dereference.
9 CVEs in our dataset match the EXEC pattern.

ASSIGN An ASSIGN fix is characterized by the addition
of a new if-statement whose body is the assignment to a
variable that is involved in a downstream dereference; the
conditional guard may or may not involve the same variable.
Such a bugfix changes the value of the assigned variable
which is used in a dereference in the subsequent program
execution. Figure 4 is an example of the ASSIGN pattern. In
CVE-2013-0211 [45], parameter s may cause an overwrite
error in line 8 if its value exceeds the maximum value to
safely write to the buffer. To avoid such a bug, the developer
constrained the value of s by adding the if-statement in lines
5 and 6. In our dataset 16 CVEs match the ASSIGN pattern.

All of these patterns involve conditional statements, but the
pattern of fix reversion is different for each, as is the code
affected by that reversion (e.g., either within the conditional
itself, or in subsequent program execution), which affects the
semantic conditions under which that pattern applies.

static ssize_t
_archive_write_data(size_t s, /xother parametersx/)

{

+ S =max_write;
archive_clear_error(&a—>archive);
return ((a—>format_write_data)(a, buff, s));

}

1

2

3

4

5 +if (s > max_write)
6

7

8

9

Figure 4: CVE-2013-0211 bugfix.

3 FIXREVERTER

The first step of FIXREVERTER (Figure 1) is to perform a
syntactic search for a fix pattern that could be reversed in
order to inject a bug (Section 3.1). FIXREVERTER’s grammar-
based syntax matcher analyzes all files in the target program
to find the code regions that match each given syntactic bugfix
pattern (Section 3.2). Each matching region is a candidate in-
jection site. Next, using information returned from the syntax
matcher, the static reachability and dependence analysis con-
firms that traced variables in the matched pattern may reach
a dereference site that could result in a crash (Section 3.3).
FIXREVERTER then injects bugs in the target program by
reverting the patterns confirmed by the static analysis (Sec-
tion 3.4), but filters uninteresting bugs through a naive bug
filter. Finally, after a fuzzing campaign, we must triage which
injected bugs were the cause of an observed failure in the
target program (Section 3.5).

3.1 Bugfix Pattern Grammar

We express the bugfix patterns using a context-free grammar
(CFG), shown in Figure 5. By convention, non-terminals are
in uppercase and terminals are in lowercase.

The CFG specifies that an if statement falls into the
ABORT pattern (lines 1-5) when (1) it has no else branch;
(2) it has a small body with up to 3 statements;' (3) the body
ends with a jump instruction (i.e., return, break, goto
or continue); and (4) when an if guard has multiple con-
ditions, they are connected by the logical OR operator.

The EXEC pattern accepts both while and for state-
ments; it also accepts i £ statements with or without else
(lines 7 and 8). The condition requires at least two conditional
expressions, connected by the logical AND operator (lines 9
and 10), and the body of the EXEC pattern cannot contain a
jump instruction (line 11).”

Lines 14 and 15 specify that an i £ statement falls into the
ASSIGN pattern if (1) it only has a single condition, and (2)
its body is a single assignment statement.

'We express this as a custom terminal upto3 in the grammar.
2Expressed as a custom terminal no_jump.

| ABORT — if ABORT_CONDS ABORT_BODY

2 ABORT_CONDS — ABORIT_COND

3 | ABORT_COND || ABORT_CONDS
4 ABORT_BODY — JUMP ‘ upto3 JUMP

s JUMP — break | goto | return | continue

6

7

8

9

EXEC — IF_WHILE_FOR EXEC_CONDS EXEC_BODY
| i€ EXEC_CONDS EXEC_BODY else EXEC_BODY
EXEC_CONDS — EXEC_COND && EXEC_COND
10 | EXEC_COND && EXEC_CONDS
11 EXEC_BODY — no_Jjump
12 IF_WHILE_FOR — if | while | for

14 ASSIGN — if ASSIGN_COND ASSIGN_BODY
15 ASSIGN_BODY — TRACER = rhs_assign

17 TRACER — PTR_TRACER \ NUM_TRACER

18 PTR_TRACER — ptrVar:traceVar[]

19 \ ptrVar:traceBase[] —=> ptrVar:traceField[]
20 \ var:traceBase[] . ptrVar:traceField[]

22 NUM_TRACER — num:traceVar|[]
23 | ptrVar:traceBase[] —> num:traceField[]
24 \ var:traceBase[] . num:traceField[]

Figure 5: Part of grammar for the ABORT, EXEC, and
ASSIGN patterns.

In our grammar, a terminal may be associated with a tracer,
which is an annotation following a colon, e.g, tracevVar|]
in ptrVar:tracevar[] on line 18. Tracers are used by
FIXREVERTER to identify the symbols whose flow should
be followed to dereference sites, thus enforcing the semantic
condition of the bugfix patterns, as detailed in Section 3.2.
For example, the left-hand side of the assignment statement
of the ASSIGN pattern is traced (line 15).

In Figure 6, we show the grammar rules that define the
different conditional expressions for each pattern (lines 1-3).
We define EQ NULL (lines 4 and 5) and NOT_EQ NULL
(lines 6 and 7) as the expressions that match a pointer tracer
that is checked to be equal and not equal to null, respectively.
We define PTR_CMP (line 9) as the expressions that compare
(<, <,>,>) two pointer operations, and PTR_REL (line 10)
as the expressions that check the equality (==, !=) of two
pointer operations. A pointer operation is a pointer tracer
or the arithmetic operation (+,—, x,/) between a pointer
tracer and a number (lines 11-13). We define NUM_CMP (lines
14-15) as the expressions that check between two numeric
operations (i.e., a numeric value or the arithmetic operation
between two numeric values). A numeric value is a literal
number, a numeric tracer (i.e., a numeric variable or field),
or the result of evaluating a function call or array access that
returns a numeric type (lines 17-21).

ABORT_COND — EQ _NULL | PTR_CMP | NUM_CMP

EXEC_COND — NOT_EQ NULL | PTR_CMP | NUM_CMP

ASSIGN_COND — NOT_EQ NULL | EQ NULL | PTR_CMP |
PTR_REL | NUM_CMP

4 EQ NULL — PTR_TRACER == ZEROVAL

woe

5 ‘ ZEROVAL == PTR_TRACER
6 NOT_EQ NULL — PTR_TRACER '= ZEROVAL
7 | ZEROVAL '= PTR_TRACER

8 ZEROVAL — null | cast null

9 PTR_CMP — PTR _OP CMP PTR_OP

10 PTR_REL — PTR_OP REL_OP PTR_OP

11 PTR_OP — PTR_TRACER ARITH NUM_VAL

12 | NUM_VAL ARITH PTR_TRACER
13 | PTR_TRACER

14 NUM_CMP — NUM_OP CMP NUM_OP

15 | NUM_OP REL_OP NUM_OP

16 NUM_OP — NUM_VAL ARITH NUM_VAL | NUM_VAL
17 NUM_VAL — NUM ‘ NUM_TRACER

18 | SINGLECALLER (ptrVar)

19 | SINGLECALLER (ptrVar [NUM])
20 | SINGLECALLER (var)

21 | SINGLECALLER (NUM)

22 NUM — lit_num | null

23 SINGLECALLER — sizeof | functionCall
24 ARITH — + | = | * | /

5 CMP — < | > | <= | >=

% REL_OP — == | I=

Figure 6: Grammar of the conditional expressions in the
ABORT, EXEC, and ASSIGN patterns.

3.2 Syntax Matcher

FIXREVERTER’s syntax matcher is implemented as a Clang
LibTool [46] (version 12). It works in two phases. First, it
reads in a grammar file just discussed, converting it into a
state machine. Phase 2 traverses the Clang abstract syntax tree
(AST) using the visitor pattern. As it encounters statements,
it finds tokens in each statement and feeds them into the
state machine to see if it matches a defined pattern. For the
statements matched, gathered tokens are placed into a JSON
file to be used in the later stages of FIXREVERTER.

Phase 1 When running the syntax matcher, a pattern file is
specified as a command-line argument. This file takes a CFG
with lists of productions NT — Token| Token, ... Token,,
where NT is a non-terminal, and a token can be either a
non-terminal or a terminal. In the grammar, a terminal may
be associated with a fracer. Information about the traced
terminals is important for the next stage of FIXREVERTER
to satisfy the semantic condition in the bugfix patterns. For
example, the name and declaration of a variable that appears in
the conditional expression of an ABORT pattern’s if-statement
are used by the static analysis. Traced terminals are written
to a JSON file with their source location and string value.
Tracers can be specified in two ways in the input grammar.
(1) terminal:tracer traces the same terminal in different
places in the grammar. For example, NT — var:tl < num

&& var:tl> numrequires the same variable to appear in both
locations of this expression. (2) terminal:tracer[] traces
multiple terminals in the grammar. For example, the pointer
tracers in lines 18-20 in Figure 5 ensure all variables, base
pointers, and fields that match PTR_TRACER are traced and
kept in traceVar[], traceBase[], and traceField[], respectively.

In phase 1, the grammar file is first parsed into a list of
productions; then, we use a generalized LR(0) parser [47]
to create a state machine. Each state represents a possible
position in the grammar. State transitions are determined by
what the possible tokens are. In this generalized parser, if there
are two or more state transitions that could be taken, it forks
into multiple parsers where each takes one of the actions. This
allows temporary ambiguity. Since each of the three patterns
we defined is mutually exclusive, this will eventually result in
one match; when conflicts are found in any forked parser, it
terminates.

Phase 2 After creating the state machine, the syntax
matcher traverses the AST using the visitor pattern provided
by Clang LibTool. For every function-statement node, if the
function exists in the original C file, we traverse its body;
otherwise (e.g., a function defined in a header file), we skip
over it. For each if-statement, for-loop, or while-loop, we start
executing the state machine. For each subsequent AST node
visited, we extract terminals from the AST node depending
on the node type, and continue executing the state machine
using the terminals. Once the visitor pattern returns to the
node which initiated the state machine, each fork of the parser
is checked. If its state machine is in an accepting state, then
the traced terminals fed into that branch are output by the
syntax matcher. For example, according to Figure 5, when the
visitor leaves an if-body, if the state machine has parsed i £
ABORT_CONDS ABORT_BODY, it will move into an accept-
ing state, and a match for the ABORT pattern will be output.

While most of the terminals we process are individual oper-
ators or variables, our custom terminals allow us to treat com-
binations of statements or expressions differently for better
expressiveness and flexibility. For example, terminal upto3
in line 4 of Figure 5 represents any compound statement body
which has fewer than or equal to 3 internal statements; ter-
minal no_ jump in line 11 of Figure 5 represents a single or
compound statement that does not contain a JUMP statement.
In addition, we can differentiate tokens by passing a different
terminal based on a value. For an integer literal, we process
null if the value is 0, and 1it_num in any other case (line
22 in Figure 6). We also distinguish some terminals based on
the type of a variable, or whether that variable is a pointer.
For example, in EQ_NULL, we require a pointer tracer to be
compared to the value O at lines 4-5 in Figure 6.

Running example We illustrate FIXREVERTER’s work-
flow with an example. Figure 7a shows the bugfix of CVE-
2017-7303 [48] in Binutils. It checks whether the variable

1 for(...)
2+ if (cheader == NULL)
3+ continue;
4 if (section_match (oheader, iheader))
5 return i;
(a) CVE-2017-7303 bugfix.
1 for(...)
2 #ifdef FRCOV
3 if (injectFlag[529]) {
4 if (oheader == NULL && !(0))
5 log("trigger bug index 529");
6 else
7 log("reach bug index 529");
s}
9 if ((injectFlag[529] && 0)
10 || (linjectFlag[529] && (oheader == NULL)))
11 #else
12 if (0)
13 #endif
14 continue;
15 if (section_match (oheader, iheader))
16 return i;

(b) Injected code. Injection index is 529.

Figure 7: Running example.

oheader is NULL, and skips the rest of the loop if so, to avoid a
subsequent NULL dereference. In REVBUGBENCH (Section
4), FIXREVERTER reverted this bugfix, (re)injecting a bug
in the target program disassemble. FIXREVERTER’s syntax
matcher finds the if-statement in lines 2-3 because it matches
the grammar of the ABORT pattern in Figure 5; the variable
oheader is considered a traced variable.

3.3 Reachability & Dependence Analysis

FIXREVERTER’s static reachability & dependence analysis
takes as input the set of tracers output by the syntax matcher.
For ABORT and EXEC, the tracers occur in the conditional
guard; for ASSIGN, the tracer is the assigned-to variable.
The static analysis does two things (visualized by the two
vertical lines on the right in Figure 2). First, it decides whether
this tracer may be reached via an execution from a designated
entry point. Second, it determines if a subsequent pointer
dereference may be dependent on the tracer, i.e., whether the
latter can influence it. In sum, the tracer is a source and the sub-
sequent dereference is a sink. Some examples of the sinks are
reading/writing of a traced pointer, offsetting a pointer using
a traced number, and calling a library function within which
a traced argument is dereferenced. For ABORT and ASSIGN,
the dereference must occur after the matched conditional. For
ABORT, if we remove the matched if, thereby reverting the
“fix, execution will reach the sink when it would not have
before, creating the potential to produce a crash. For ASSIGN,
it will reach the sink without having executed the reverted

assignment. The semantic condition of EXEC is different: the
subsequent dereference must occur within the body of the
if/while/for whose guard contains the tracer. Fix reversion
drops a clause in the guard, making it possible for execution
to reach a sink it would not have, producing a crash.

Running example Analyzing the example in Figure 7a,
FIXREVERTER'’s static reachability analysis finds that this
ABORT pattern appears in the function find_link, which is reach-
able from the entry function of disassemble. The dependence
analysis tracks that the variable oheader is the argument passed
to section_match, which dereferences it. Thus there is a source-
sink flow between oheader and the dereference site, confirming
the semantic condition of this pattern.

Implementation We built the analysis on top of the Phasar
C-code static analysis framework [49]. Phasar provides a
summary-based solver of Inter-procedural Finite Distributive
Subset (IFDS) [50] problems, including taint analysis. IFDS
solves a dataflow problem by constructing an exploded super-
graph (ESQG), replacing every node of its inter-procedural
control-flow graph (ICFG) with the bipartite graph representa-
tion of the respective flow function [50]. Our implementation
is based on Phasar release v0521 [51] using LLVM 12.0 [52].

FIXREVERTER’s analysis extends Phasar’s existing IFDS-
TaintAnalysis module. It takes a set of entry functions to start
solving the dataflow problem. It uses the ICFG to decide
which sources are reachable from these entry functions, and
then uses the taint analysis to identify dependences between
these reachable sources and possible sinks. The analysis is
context-sensitive and field-based [53]. When constructing the
ICFG, it uses a pointer analysis [53] to resolve the targets
for function pointers. The analysis operates on the whole-
program LLVM Intermediate Representation (IR) [52], gener-
ated using WLLVM [54] and LLVM disassembler 11vm-dis.

Our static dependence analysis addressed several limita-
tions of Phasar’s IFDSTaintAnalysis module. First, Phasar’s
IFDSTaintAnalysis module ignores fields when propagating
taintedness, which makes the taint tracking unsound. We im-
plemented a field-based [53] analysis by extending the IFDS-
TaintAnalysis module with a global set. This set stores the
tuple <type of its base pointer, field offset>, called the field
tuple. When a field is tainted through propagation, its field
tuple is added to the set. When there is a field access, we look
up the set. If its field tuple exists in the set, the field is tainted.

Second, Phasar’s IFDSTaintAnalysis module does not keep
track of the origin of the taintedness of a variable. Thus, it
cannot report data-dependent source/sink pairs, only that a
sink is tainted. To tell which tracer may lead to an exploitable
memory error, we extend the [IFDSTaintAnalysis module with
a global map to keep track of the sources of tainted variables.
The key of the map is called the taint-track key, which is either
a tainted variable or a field tuple. Each taint-track key maps to
the list of taint-track keys that its taintedness originates from.

The map is updated each time a taint-track key is tainted.
When the analysis completes, we use the map to output the
pairs of sources/sinks that have a data dependence.

To identify the sources of the static dependence analysis,
we use line and column numbers of all traced variable and
base pointer declarations produced by the syntax matcher,
and match against the debug information in l[lvin.dbg.declare
instructions [55] (target programs are compiled with no opti-
mization to generate these instructions). For each traced vari-
able, we retrieve the corresponding IR register as the source.
For each traced field, we add to a global data structure for
our field-based analysis the field tuple <type-of-traceBase,
traceField-offset>. This tuple is also treated as the source of
the dependence analysis. We identify the sinks (i.e., pointer
dereferences) as IR instructions that perform a dereference.

Limitations The analysis inherits two limitations of
Phasar’s IFDSTaintAnalysis. First, Phasar’s control-flow anal-
ysis is unsound, in part due to an imprecise treatment of
function pointers, meaning it may incorrectly claim that some
functions are unreachable. As such, some injection sites may
be unnecessarily ruled out. To get a sense of the impact of
this unsoundness, we ran an experiment in which we ignored
the static analysis and injected all ABORT bugs at candidate
injection sites in the 10 programs in Table | and we fuzzed
those programs with AFL++ for 24 hours. We found that in
addition to the 102 bugs found by AFL++ that were approved
by the static analysis, there were 14 more that were incorrectly
filtered out by it. We are working with the Phasar authors to
fix this unsoundness. Second, sinks that are not in the applica-
tion code are specified as a list of library-function parameters;
this by-hand specification runs the risk of missing some sinks.

3.4 Bug Injection

We implement the FIXREVERTER bug injector as a Clang
LibTool [46] (version 12). The injected code allows a devel-
oper to distinguish the following three states for each injected
bug after fuzzing a target.

e Not reached: the fuzzer never reaches the conditional
statement;

* Reached: some inputs generated by the fuzzer reach the
conditional statement;

* Triggered: the reversed condition(s) with tracer is satis-
fied, while other condition(s) in the same statement is
not satisfied.

Similar bug states are used in Magma [12].

We take output from the previous step of FIXREVERTER
to perform an injection. For ABORT and ASSIGN, if there is
a single guard expression, then the entire conditional and its
body are skipped (it becomes if (0)...), mimicking the reversion

of fixes as in Figure 2. For ABORT, if the guard expression is a
disjunction (e.g., if (p || g)...) and just one of the subexpressions
has a traced variable, then that subexpression is skipped (e.g.,
it becomes if (p)...); if all disjunctive clauses are traced, the
entire if is skipped. For EXEC, the if body is retained, but the
last-seen, relevant conditional expression is removed; e.g., if (p
&& q)... becomes if (q)..., as in Figure 3. When multiple injection
candidates are syntactically nested, we inject the innermost
candidate in the nested structure.

We use a static conditional preprocessing block to distin-
guish the injections when running the fuzzer and when triag-
ing a crash (see Section 3.5), controlled by a macro, FRCOV.
We can see this in Figure 7b. When the macro is undefined,
the program can be used for fuzzing—in the running example,
we have effectively replaced if(oheader==NULL) continue (lines
2-3 of Figure 7a) with if(0) continue (lines 12-14 of Figure 7b).
This way no new branch is introduced so that it will not be
biased towards fuzzers that are sensitive to control flows.

We define FRCOV to compile the programs used for triaging.
This enables extra logic to log that a bug is triggered if the
subexpression(s) with tracers is satisfied and other subexpres-
sion(s) is not satisfied. Otherwise, reached is logged. FIXRE-
VERTER controls if an injection is turned on or off using an
environment variable (which will cause injectFlag[529] to be true
or false, in Figure 7b). Turning off an injection means that the
original code logic at the injection site is preserved.

Before fuzzing a program, we compile it with options of
address sanitizer (ASan) [56] and undefined behavior sani-
tizer(UBSan) [57]. This way, both temporal and spatial mem-
ory safety violations (out-of-bounds reads/writes, and uses-
after-free) will reliably trigger a crash when they occur, in
both the FRCOv-enabled/disabled versions of the program.

After bug injection, we perform the naive bug filter. As
discussed in Section 1, we filter the uninteresting bugs that
will fail too easily if injected.

3.5 Bug Triage

When a fuzzer generates an input that causes a FIXRE-
VERTER-processed program to crash, we want to report the
specific cause. This is not as simple as it might seem. Just be-
cause a condition is triggered does not mean that a dependent
variable must then be dereferenced, only that it could be—the
program may sometimes take an execution path that avoids
that dereference. As such, running an input could trigger sev-
eral injections, and a triage procedure must determine which
ones are material in producing the crash.

Our triage procedure works by re-running the triage version
of the target program (i.e., with the marcro FRCOV defined) on
the generated input with subsets of the triggered bugs injected,
to see under which circumstances the program still crashes.
At the end, triage will identify two kinds of causes of failure:

* When input / produces a failure when a single bug is
injected, call it A, then we say I triggering A is an indi-

Input: [: crashing input; ¢s: set of triggered injections
Output: bs: the set of I’s failure causes

1: bs+ 0

2: for i from 1 to | ts|| do

3: for each set s € Powerset(ts) where || s| =i do
4 if 35’ € bs. s’ C s then
5: Run 7 on inject(s)
6: if I crashes then

7: bs < bs U {s}
8: end if

9: end if
10: end for
11: end for

Figure 8: Bug triage algorithm.

vidual cause. Even though other bug sites were triggered
during the run, A is enough to cause the crash on its own.

e When input / produces a failure only when multiple bugs
are injected, say A and B, then we say the failure cause is
a combination of A and B. Neither A nor B individually
is enough—both must present for the crash to occur.

Interestingly, it is possible that the same input can cause mul-
tiple individual- or combination-bug crashes. For example,
a bug (or combination of bugs) in an initial stage of input
processing may cause a crash on /, but if that bug(s) was/were
removed, another bug (or combination) may cause a crash
when the program processes a different part of /.

We use an algorithm to triage a crash into a set of causes.
Intuitively, this algorithm first finds any individual causes,
and then finds combination ones, if they exist. For example,
if an input 7 triggers injections zs = {A,B,C,D}, a set bs =
{{A},{C,D}} produced by the algorithm means that {A} is
an individual cause (injecting only A causes the crash), and
{C, D} is a combination cause (injecting both C and D causes
the crash but injecting them individually does not).

This algorithm is shown in Figure 8. It takes a crashing
input /, and 7s, the set of injections that were triggered when
executing /. For each subset s in the powerset of zs, starting
from the subsets whose size is 1 (lines 2-3), if s is not a
superset of any element in the set bs (line 4), line 5 injects
only the bugs in s and runs /. If crashes, s is added as a cause
to set bs (lines 6-7).

We report both individual and combination causes in our
evaluation (see details in Section 5).

4 REVBUGBENCH

In this section, we discuss how we used FIXREVERTER to
create REVBUGBENCH.

4.1 Target programs

REVBUGBENCH consists of 10 programs chosen from
two sources. First, we use 8 programs from FuzzBench.
FuzzBench currently consists of 47 real-world programs. We
chose these 8 programs because the majority of their source
code is written in C which our tool supports and the syn-
tax matcher returns more than 100 candidate injection sites
on these programs. Second, we chose two utilities, cxxfilt
and disassemble, in the Binutils package. These utilities
are frequently used in the literature to evaluate fuzz test-
ing [9, 15, 15,26,33-36]. Column 1 in Table | shows the
program names and column 2 shows the size (in MB) of each
program (its program-specific LLVM bitcode). All 10 pro-
grams run from the libFuzzer [24] fuzzing entrypoints which
allowed us to integrate REVBUGBENCH into the FuzzBench
service (Section 4.3). The versions of these programs are the
same as those used in FuzzBench if they are specified, or the
most recent version at the time REVBUGBENCH was created.

4.2 FIXREVERTER usage

Columns 5, 8, and 11 in Table | show the number of injected
bugs for each program, grouped by each bugfix pattern. In
total, we injected over 7900 bugs; the ABORT pattern had the
most injections (6742).

Syntax matcher We ran FIXREVERTER’s syntax matcher
on C source files in the target programs. First, for each pro-
gram, we use Bear [64] to generate a compilation database
that records compile commands needed to build C files. The
syntax matcher is then run on the source files in the compi-
lation database; other C source files not in the compilation
database are omitted.

Static reachability & dependence analysis To run the
static analysis requires specifying a set of program entry-
points. Because every program in REVBUGBENCH runs from
a libFuzzer harness, we use each program’s LLVMTestOnelnput

function as its entry point. Our implementation based on
Phasar release v0521 experienced out of memory crashes on
disassemble, curl, libxml2_reader, libxml2_xml and usrsctp.
This Phasar release improved from earlier versions the sound-
ness of its dataflow analysis, but also introduced performance
overhead. For these five program, we used an earlier version,
Phasar v1220 [65], to avoid the memory error. On average,
static analysis dropped 71% of the injection sites returned by
the syntax matcher.

Naive bug filter For each target program, we inject each
potential injection site returned by the static analysis and exe-
cute the program with its fuzzing seeds. For each REVBUG-
BENCH program, we use the seeds provided by its maintainers
if available (curl, libpcap, libxml2_reader, proj4, usrsctp, and
zstd). Otherwise, we use a default seed “hi” (consistent with
FuzzBench’s practice of seed selection) and a small valid seed

Table 1: REVBUGBENCH. The syntax, semantic, and final columns show the numbers of injection sites returned by the syntax

matcher, static analysis, and naive bug filter, respectively.

Size (MB Injection sites

Program bitcode) ABORT EXEC ASSIGN

#syntax | #semantic | #final | #syntax | #semantic | #final | #syntax | #semantic | # final
cxxfilt [27] 40 5784 88 86 360 1 1 1404 7 7
disassemble [27] 67 5784 1263 1262 360 56 55 1404 181 181
curl [58] 22 304 159 155 13 1 1 57 21 19
Iems [59] 2 587 365 360 15 6 5 40 11 10
libpcap [60] 1 252 92 87 11 0 0 19 8 7
libxml2_reader [29] 8 3992 2142 2122 186 112 112 564 340 335
libxmlI2_xml [29] 8 4442 1624 1615 206 91 91 594 285 278
proj4 [61] 3 246 223 222 10 2 2 21 8 8
usrsctp [62] 5 732 580 572 51 36 35 14 7 7
zstd [63] 5 488 285 261 5 0 0 60 18 14
Total 161 22611 6821 6742 1217 305 302 4177 886 866

taken from AFL’s repository based on file format. We drop
from consideration any injections that crash any seed. The
naive bug filter dropped 102 injections.

4.3 FuzzBench Service Integration

FuzzBench provides service to evaluate fuzzers on real-world
benchmarks, at scale [3]. It has integrated multiple state-of-
the-art fuzzers and provides build scripts that make it eas-
ier to replicate fuzzing evaluations. However, FuzzBench fo-
cuses on comparing fuzzers via code coverage. While it also
supports measuring fuzzer performance via bugs found, its
method to distinguish bugs (stack traces) is unreliable, as
discussed in Section 1. We integrated REVBUGBENCH into
FuzzBench to allow replicable and large-scale evaluations
of fuzzers that measure their ability to find crashing bugs in
real-world programs.

We extended three key components of FuzzBench: bench-
marks (target programs), measurer (on-the-fly result analyzer),
and reporter (statistical analysis of results).

Each program in FuzzBench is automatically compiled on
a Docker image [66], so called base-image, with a build script.
We build FIXREVERTER in the base-image of each target
program and modify its build script to run FIXREVERTER.
Specifically, we generate the compilation database to run
the syntax matcher, create the intermediate representation
to perform the static analysis, and then inject the bugs. The
bug-injected programs are given to FuzzBench for fuzzing
(i.e., added to its benchmarks component). The programs are
compiled with options of address sanitizer (ASan) [56] and un-
defined behavior sanitizer (UBSan) [57] set up by FuzzBench.

FuzzBench’s measurer runs inputs generated by fuzzers
on target programs, and measures some characteristics of the
execution such as code coverage. FuzzBench packs inputs
generated every 15 minutes into a cycle. The measurer is
invoked in every cycle to process the inputs. We extended
the measurer with our bug triage algorithm (Section 3.4) to
measure which injections (or their combination) are reached,
triggered and/or crashed. We also extended the measurer to

store the collected results in a database for further analysis
after each fuzzing campaign completes. We implemented such
an analysis to speed up the bug triage with multi-processing.

FuzzBench’s reporter performs statistical analysis on data
collected from each fuzzer, such as how code coverage grows
over time. We reuse its interface to run the same analysis to
report the bugs found by each fuzzer over time.

5 Experiments

This section presents the experimental results of running five
different fuzzers on REVBUGBENCH, to assess its utility as
a fuzzing evaluation benchmark, and FIXREVERTER’s ef-
fectiveness at bug injection. Our assessment considers the
following three questions:

(1) Does FIXREVERTER inject bugs that can trigger actual
crashes (Section 5.1)? FIXREVERTER’S static analysis is con-
servative, so it could retain injections that it thinks may lead
to a crash, but do not in actual fact. The experiments show
that hundreds of injections are triggered in REVBUGBENCH,
and many of these lead to crashes.

(2) Does FIXREVERTER inject bugs that are hard to find, at
least for some fuzzers (Section 5.2)? If REVBUGBENCH only
contains bugs that all fuzzers can find, it fails to distinguish
one fuzzer from another. The experiments show that only a
fraction of the injected bugs trigger crashes (i.e., they are not
too easy); some bugs are only triggered by some fuzzers; and
fuzzer performance varies overall.

(3) Do fuzzers trigger crashes owing to combination causes
(see Section 3.5), i.e., where multiple bugs must be present for
the crash to occur (Section 5.3)? Triggering an injected bug
(or bugs) may not lead to a crash, on its own, but doing so may
perturb control flow toward another bug that triggers one. The
experiments reveal many combination causes, which consti-
tute an additional, interesting performance measure. In most
cases a fuzzer’s performance is consistent when measuring
either individual causes or combination causes.

Experimental setup The five fuzzers we ran are AFL [1],
libFuzzer [24], AFL++ [25], Eclipser [16], and FairFuzz [26].

Table 2: Fuzzer performance on REVBUGBENCH. Reach, Trigger, Individual, and All Causes columns show median numbers
of reached injections, triggered injections, individual causes, and distinct injections that caused any crashes (individual or
combination). Each cell first shows the results of all patterns, and then ABORT, EXEC and ASSIGN in the parentheses.

P AFL [1] AFL++ [25]
rogram Reach Trigger Individual All Causes Reach Trigger Individual All Causes
cxxfilt 49 (46 0 3) 35(3302) 8(800) 26 (26 0 0) 51(4803) 36(3402) 27(2700)
disassemble 68 (6125) 14(824) 11821 11(821) | 110(10325) 18(1224) 41121
curl 59 (46 0 13) 25(2005) - 10(1000) | 58(46012) 20 (17 04) 5(500) 6(600)
lcms 139 (1314 4) 26 (2402) 7(700) 20(1802) | 152(14345) 33(3103) 11(1100) 27(2502)
libpcap 31(3001) 14(1301) 3300 9801) 43(4201) 19(1801) \ 100901)
. 413 (327 18 108 (48 11 482 (374 22 141 (61 13
libxml2_reader 68) s 19 (104 6) 47 (227 19) 86) 70) ‘ 66 (35 823)
libxml2_xml 257 (20257) 65 (25437) 8(521) 38 (13323) 304 (2527§ 83 (384 41) ‘ 29 (172 10)
proj4 78(7215) 35(3302) 18 (16 02) 20(1802) | 174 (16716) 74(7202) 31(2902) 32(3002)
usrsctp 226 214]1; 15(1220) 6(410) 7(610) 238 (224 113) 20 (173 0) ‘ 14 (1220)
zstd 152(14705) | 100(9505) 34(34 0 0) 71(7000) | 151(14605) | 101 (9605) 31(3100) 63 (6300)
Total 1472 437 120 259 1763 545 146 288
(127195‘8 (311 19 109) (101 9 10) (199 13 48) (154f7419) (396 22 132) (1259 12) (235 14 39)
Program Eclipser [16] FairFuzz [26]

g Reach Trigger Individual All Causes Reach Trigger Individual All Causes
cxxfilt 50(4703) 37(3502) \ 28 (28 0 0) 44 (4202 31(3001) 7(700) 24 (2400)
disassemble 73 (6625) 14(824) 11(821) 11(821) 34(2725) 13(924) 110921) 110921)
curl 59 (46 0 13) 28 (2305) 90900 58 (460 12) 26(2203) 8(800)
lems 144 (1354 4) 24(2202) 8(700) 18(1701) | 143(13544) 26(2302) 9(700) 17(1601)
libpcap 28270 1) 13(1201) 3300 8(701) 17 (160 1) 7601 1(100) 3300
libxml2_reader 4l (3256?) 106 (44512(; 18 (103 5) 49 (23 6 20) 375 (29861)3 98 (429 46) 15(823) 42 (21516)
libxml2_xml 262 (21;)5? 67 (25 4 38) 7401) | 31(12317) 269 (21166) 72 (29 4 39) 5(@01) 20 (1118)
proj4 199 (1921 6) 81(7902) [IBSIGIORN 333102 75(6915) 333102 17(1502) 19(1702)
usrsctp 218 (206 11; 15(1320) 7(610) 9(810) 192 (180 11; 10 (820) 3(210) 3(210)
zstd 151(14605) | 101(9605) [IBAGAOON 70(7000) | 149(14405 | 93(8805) 34(3400) | 61(6100)
Total 1595 486 139 266 1356 409 108 208

(140?5412) (357 18 111) (12169) (213 1242) (117;‘4‘3 (288 17 103) (9357) (1729 28)
Proeram LibFuzzer [24] MetaFuzzer

g Reach Trigger Individual All Causes Reach Trigger Individual All Causes
cxxfilt 24(2401) 16 (1501) 3300 14 (14 0 0) 53(5003) 42 (3903) 11(1100) 353500)
disassemble 38 (2828) 16(926) 11(822) 12(922) | 139(12928) 22 (142 6) 16 (1222) 17(1322)
curl 49 (4009) 19 (16 0 3) 4400 6(600) 59 (460 13) 31(2605) 7(700) 13(1201)
lems 135 (128 4 3) 252401) [BNBOON 22(2101) [161(15245) | 41 (3803) 21(1902) 333102
libpcap 30(2901) 12(1101) 3(3300) 9801) 48(4701) 24(2301) 7(700) 16 (1501)

. 396 (314 18 545 (422 26 175 (79 15 109 (49 11
libxml2_reader 64) 92 (36947) 16 (933) 64 (25831) 97) 81) 33 (164 13) 49)
libxml2_xml 262 (215 4(; 67 (29 4 34) 4(400) 15(1015) 317 (25585 90 (40446) | 32(10319) | 75(33339)
proj4 163 (158 0 5) 73(7201) 30(2901) 31(3001) | 204 (19716) 86 (8303) 36(3402) 38(3602)
usrsctp 199 (187 11; 11(920) 3(210) 7(610) 249235 113) 20 (173 0) 9(720) 15(1230)
zstd 140 (13505) 79(7405) 28 (28 00) 52(5200) 152(14705) 107(10205) 47 (4700) 89 (8801)
1436 410 115 232 1927 638 219 440
Total (1255 41 (1683 53
141) (295 17 99) (103 6 6) (181 1241) 191) (461 24 153) (170 11 38) (324 1997)
AFL and libFuzzer are both classic and popular fuzzers. nificantly outperforms other fuzzers in terms of bugs found on
AFL++, Eclipser, and FairFuzz were all recently developed. LAVA-M [16]. FairFuzz is the most referenced recent fuzzer
AFL++ is the best fuzzer using FuzzBench’s coverage metric that has been integrated into FuzzBench.

in a sample report [67]. Eclipser’s evaluation shows that it sig- Each fuzzer was run on each benchmark program with 3

160
3
© 140
3 ahihikhkchaa
8 120
© ,‘":::::‘“““““...,,“.
5 100 ,
S L.
5 807 4% AFL++
S 60 i —— Eclipser
e —e— AFL
'g 401 LibFuzzer
2 207 FairFuzz

1234567 89101112131415161718192021222324
Time (hour)

Figure 9: Individual causes detected over time.

trials and 24-hour timeout. We ran bug triage for all crashing
inputs generated by each fuzzer, except for LibFuzzer’s results
on libxml2_reader and libxml2_xml. These two runs gener-
ated orders of magnitude more crashing inputs than other
runs (over 150,000 compared to a few hundred), making it
infeasible to triage all of them. We thus took a random sample
of 664 crashing inputs, which ensures the results are within a
5% margin of error and 1% confidence level. We also limited
the triage of each combination cause to include at most 3
injections. Bug triage took between 3 and 240 minutes for
each fuzzer on each benchmark program.

The experiments were run on 2 servers. Server A has 2 In-
tel(R) Xeon(R) Silver 4116 CPUs with 192GB RAM running
Ubuntu 16.04. Server B has 2 Intel(R) Xeon(R) Gold 5218
CPUs with 384GB RAM running Ubuntu 18.04. All exper-
iments of each target program were conducted on the same
server to ensure that the fuzzer performance can be compared.

5.1 Does FIXREVERTER inject bugs that
fuzzers can actually find?

Table 2 tabulates overall fuzzer performance. Each row is a
REVBUGBENCH program, and each group of columns iden-
tifies a particular fuzzer. Fuzzers that detected the most in-
dividual causes for a program are highlighted in gray. The
MetaFuzzer columns show the aggregated results over all
trials of all fuzzers in each program, an upper bound when
comparing fuzzers. We use this combined performance mea-
sure to illustrate the properties of REVBUGBENCH. Overall,
using the number of individual causes as the performance
metric, the MetaFuzzer found a total of 219 individual causes
in REVBUGBENCH, out of thousands of possible injections
(Table 1); most of these individual causes (170) were due to
the injected bugs that reversed the ABORT pattern.

AFL++ was the best performing fuzzer, detecting the most
individual causes overall (146), and the most in 6 programs
(tied with Eclipser in 1 program). Eclipser was a close second,
finding 139 individual causes, and the most in 4 programs
(tied with other fuzzers in 1 program). While AFL, FairFuzz,

and LibFuzzer found fewer individual causes, each of them
has 1 program in which it detected the most individual causes.

Table 2 shows fuzzer performance by the end of the 24-
hour timeout; Figure 9 shows the median number of individual
causes detected over time, for each fuzzer for all programs.
Many bugs were found quickly, with a long tail. All fuzzers
were able to detect some individual causes even after 12 hours
of the fuzzing campaign. This result illustrates the challenge
of detecting some injected bugs in REVBUGBENCH. AFL++
consistently performed better than other fuzzers over time.
On the other hand, although libFuzzer started by finding many
individual causes (75) in the first 45 minutes, it was eventually
surpassed by AFL and Eclipser over 24 hours.

5.2 Does FIXREVERTER inject bugs that are
hard to find?

Overall, fuzzers found 219 distinct individual bugs during
our experiments, out of thousands injected. We do not know
how many of those injected can lead to a crash (due to the
overapproximate nature of the static analysis), but our experi-
ments show that a sufficient number can be used to distinguish
different fuzzers’ performance.

Indeed, with more time and trials, we expect more will
be detected. For example, we observed that different bugs
were detected by the same fuzzer in different trials: although
LibFuzzer found the most individual causes in lcms (13); in
total there were 21 individual causes found in all trials by all 5
fuzzers (captured in the MetaFuzzer result). Moreover, we can
see that Table 2’s Reach and Trigger columns, which count
the number of injection sites’ reverted conditions that fuzzers
reached and triggered, respectively, are a fair bit higher than
the number of causes. 1927 (24%) and 638 (8%) of all 7910
injected bugs were reached and triggered, respectively. We
expect that for at least some of these, different inputs would
drive the program from the trigger to a crash.

The Venn diagram in Figure 10 examines which fuzzers
found which bugs (in any trial). Over 40% (91 out of 219) in-
dividual bugs were detected by all fuzzers, and 16% (35) bugs
were detected by four fuzzers. This shows a large number of
FIXREVERTER injected bugs can be found by most fuzzers.
On the other hand, each fuzzer detected unique bugs that other
fuzzers did not find. Overall, about 19% (42) of all individual
bugs were only found by 1 fuzzer. FairFuzz, the fuzzer that
had the worst performance in terms of detecting individual
causes, found 2 unique bugs. AFL++, as expected, found the
most unique bugs (28). This result also shows that FIXRE-
VERTER injected bugs that do not overfit a single approach in
the evaluated fuzzers.

5.3 Do fuzzers find combination causes in
REVBUGBENCH?

Our idea in developing REVBUGBENCH was to assess a
fuzzer’s performance according to individual bugs found.

AFL++
28

AFL o 1 s Eclipser

91

0 AFL
AFL++
1 1 Eclipser
2 2 FairFuzz
LibFuzzer

LibFuzzer FairFuzz

Figure 10: Venn diagram of all individual causes.

However, we discovered via our triage procedure (Section
3.5) that many crashes only occurred if more than one bug
is injected (i.e., the combination cause); these are tabulated
(summed with individual causes) in the All Causes columns
in Table 2.

For a crash with an individual cause, a reverted condition is
triggered and subsequent execution dereferences a dependent
variable that the check would have prevented, producing a
crash. But not every individual trigger necessarily leads to a
crash, as discussed above; additional criteria may also need
to be met which are outside the triggered condition. When
multiple bugs are injected, it is possible that these criteria
could be met by triggering another bug (or bugs). For example,
suppose that for a particular input /, triggering bug A violates
an invariant about a data structure, but then triggering bug B
drives control flow to a point that accesses that data structure.
Both bugs are needed to cause the crash, for /.

When assessing fuzzer performance, counting individual
bugs is simplest, but doing so fails to account for bug interac-
tions observed, and potentially exploited, by fuzzers during
a campaign. As shown in Table 2, combination causes were
detected in all programs; sometimes individual causes were
more prevalent (e.g, disassemble and proj4), and sometimes
combination ones were (e.g., libxml2_reader and cxxfilt).
Nevertheless, relative performance among fuzzers is fairly
consistent whether using “individual causes" and “all causes"
as metrics. AFL++ was the best fuzzer using both metrics.
Overall, fuzzers performed consistently on the metrics of
reach, trigger and cause. A better fuzzer (e.g., AFL++) tends
to perform better using all three metrics on each target pro-

gram.

6 Related Work

As discussed in Section 1.1, prior fuzzing benchmarks have
limitations that FIXREVERTER can help address. Google
fuzzer-test-suite [68], recently superseded by FuzzBench [3],
and UNTFUZZ [10] are platforms for evaluating fuzz testers
at scale, but neither provides a distinctive indication of when
a bug is triggered; doing so has been shown to yield highly
unreliable results [9]. FIXREVERTER’s automatically injected
bugs produce crashes that can be definitively characterized,
using our novel triage algorithm.

Magma [12] and DARPA Cyber Grand Challenge (CGC)
[11] comprise programs with manually injected bugs that give
a telltale sign when triggered. Magma’s programs are real,
and the injected bugs are based on a variety of actual prior
bugs; CGC’s programs and bugs are synthetic, with many
small programs and one bug per program. FIXREVERTER’s
injected bugs are realistic, based on the reversal of common
bugfix patterns we found in a corpus of CVEs.

LAVA is another bug injection framework for benchmark-
ing fuzz testing [13]. It relies on a dynamic taint analysis to
identify program locations where some input bytes b are able
to influence program behavior. Near these program locations,
LAVA injects out-of-bounds accesses predicated on compar-
isons to “magic values," e.g., b==0x6c617661. There is concern
that the injected bugs in LAVA-M [13] are biased, as noted by
LAVA authors [20] and Magma’s evaluation [12]. Such bias
was not observed in our evaluation on REVBUGBENCH.

Apocalypse [19] is a bug injection methodology that adds
code implementing an error transition system (ETS) along
a judiciously chosen program path; when the final state is
reached, a fault is induced. The current state of ETS is kept
in an injected global variable, and transitions are guarded by
predicates over program variables; such predicates are synthe-
sized from symbolic execution path conditions (for feasibility)
and model counts (for rarity). Apocalypse was used to inject
bugs in 30 Coreutils programs, and it was evaluated using
KLEE [69] and AFL [1]. One nice feature of Apocalypse is
that, like LAVA, injected bugs are always triggerable—they
are injected along what is known to be a feasible path. Hav-
ing to witness such a path in advance, however, is arguably a
limitation, and one that FIXREVERTER does not have. Also
like LAVA, Apocalypse-injected bugs are synthetic, whereas
FIXREVERTER-injected bugs are more realistic. We view
Apocalypse and FIXREVERTER as complementary, and in-
deed both could be used to inject bugs in the same benchmark.

EvilCoder [21] is also a vulnerability injection methodol-
ogy that relies on static dataflow analysis. It identifies sensi-
tive sinks, such as calls to system(), and user-controlled sources,
such as returns from fread(), and aims to discover dataflow
paths from the former to the latter. To inject a bug, it tries to
find “security mechanisms” that are used to affect variables

that carry data along the flow, e.g., by sanitizing them, and
then “instruments” the mechanism so as to bypass it. While
EvilCoder’s source-sink discovery component has been im-
plemented, its bug injection component seems to not have
been automated, and just a proof-of-concept example was de-
veloped. As such, the utility of the approach was never fully
evaluated. Different from EvilCoder, FIXREVERTER focuses
on injecting vulnerabilities based on bugfix patterns that are
defined both syntactically and semantically. Dataflow analysis
in FIXREVERTER (i.e., the static reachability and dependence
analysis) can also be viewed as a static taint analysis, but its
primary goal is to match the semantic pattern, as described
in Section 3.3. We conjecture that FIXREVERTER could be
extended to implement EvilCoder-style bugs.
FIXREVERTER is a kind of fault injector, an antithesis to
tools that aim to automatically fix faults. While no past work
has used bugfix patterns to introduce triggerable bugs for the
purpose of benchmarking fuzz testing as we present in this
paper, work on automatic program repair has seen successful
applications of bugfix patterns [70]. For example, Getafix [41]
applies a hierarchical clustering algorithm that summarizes
fix patterns into a hierarchy and a ranking technique that uses
the context of a code change to select the most appropriate
fix for a given bug. Getafix shows that real-world bugfixes
often use patterns similar to what we revert in FIXREVERTER,
further evidencing the feasibility of using bugfix patterns to
(re-)introduce realistic bugs. The bugfix patterns discovered
in automatic program repair and other works that study the
bugfix repositories (e.g., [38,71,72]) may be adapted to allow
FIXREVERTER to support other bug injections.

7 Conclusions and Future Work

This paper has presented FIXREVERTER, a novel bug injec-
tion framework at the heart of a fuzzing benchmark-producing
methodology. It aims to inject realistic bugs that give a
unique indication when triggered. It does so by finding,
through syntactic matching and static analysis, code patterns
that match fixes of previous CVEs; reversing those patterns
should (re)introduce self-signaling bugs. FIXREVERTER-
based benchmarks can evolve, since FIXREVERTER can be
used to inject bugs into new programs and with new patterns.
Doing so ensures the benchmark is relevant and fresh, so
tools do not overfit to it. FIXREVERTER serves as a useful
complement to frameworks such as Google’s FuzzBench [3].

We constructed REVBUGBENCH by using FIXREVERTER
on 8 FuzzBench and 2 Binutils programs that are common tar-
gets of fuzzing tools. We evaluated 5 fuzzers using REVBUG-
BENCH and its built-in performance metrics. We observed
that FIXREVERTER injected many triggerable bugs, and these
fuzzers detected very different bugs in REVBUGBENCH.
Overall, the fuzzer performance varied by target program,
with AFL++ doing the best.

We see two important future directions. First, FIXRE-
VERTER’s static analysis has several shortcomings that, if
fixed, should improve the quality of its results. In particular,
sound handling of function pointers would make the static
analysis more useful. Second, FIXREVERTER’s bugfix pat-
terns can be extended according to further study of existing
fixes in bug databases [38,41]. We plan to include patterns
that do not involve changes to the control flow as in the three
current patterns but require new definitions of the semantic
conditions.

Acknowledgements

This work was partly supported by NSF grants CCF-1816951
and CCF-1955610. We would also like to thank Google’s
FuzzBench team for their help on our experiments and the
anonymous reviewers for their detailed comments that im-
proved the paper.

References

[1] “american fuzzy lop,” https://Icamtuf.coredump.cx/afl/.

[2] V.J. M. Manes, H. Han, C. Han, S. K. Cha, M. Egele,
E. J. Schwartz, and M. Woo, “The art, science, and en-
gineering of fuzzing: A survey,” IEEE Transactions on
Software Engineering, 2019.

[3] “Fuzzbench: Fuzzer benchmarking as a service,” https:
/Igoogle.github.io/fuzzbench/.

[4] R. Gopinath, C. Jensen, and A. Groce, “Code cover-
age for suite evaluation by developers,” in International
Conference on Software Engineering (ICSE), 2014.

[5] P. S. Kochhar, F. Thung, and D. Lo, “Code coverage
and test suite effectiveness: Empirical study with real
bugs in large systems,” in IEEE International Confer-
ence on Software Analysis, Evolution, and Reengineer-
ing (SANER), 2015.

[6] L. Inozemtseva and R. Holmes, “Coverage is not
strongly correlated with test suite effectiveness,” in Inter-
national Conference on Software Engineering (ICSE),
2014.

[7] M. Bohme, L. Szekeres, and J. Metzman, “On the re-
liability of coverage-based fuzzer benchmarking,” in
Proceedings of the 44th International Conference on
Software Engineering, ser. ICSE *22, 2022, pp. 1-13.

[8] D. Molnar, X. C. Li, and D. A. Wagner, “Dynamic test
generation to find integer bugs in x86 binary linux pro-
grams,” in USENIX Security Symposium, 2009.

https://lcamtuf.coredump.cx/afl/
https://google.github.io/fuzzbench/
https://google.github.io/fuzzbench/

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks,
“Evaluating fuzz testing,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS *18. New York,
NY, USA: Association for Computing Machinery,
2018, p. 2123-2138. [Online]. Available: https:
//doi.org/10.1145/3243734.3243804

Y. Li, S. Ji, Y. Chen, S. Liang, W.-H. Lee, Y. Chen,
C. Lyu, C. Wu, R. Beyah, P. Cheng, K. Lu, and T. Wang,
“Unifuzz: A holistic and pragmatic metrics-driven plat-
form for evaluating fuzzers,” 2020.

“Darpa cyber grand challenge (cgc) binaries,” https://
github.com/CyberGrandChallenge/, 2018.

A. Hazimeh, A. Herrera, and M. Payer, “Magma: A
ground-truth fuzzing benchmark,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 4, no. 3, Dec. 2020. [Online].
Available: https://doi.org/10.1145/3428334

B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mam-
bretti, W. K. Robertson, F. Ulrich, and R. Whelan,
“LAVA: large-scale automated vulnerability addition,”
in IEEE Symposium on Security and Privacy (S&P),
2016.

“RodeOday: A continuous bug finding competition,”
https://rodeOday.mit.edu/.

P. Chen and H. Chen, “Angora: Efficient fuzzing by
principled search,” in 2018 IEEE Symposium on Security
and Privacy (SP), 2018, pp. 711-725.

J. Choi, J. Jang, C. Han, and S. K. Cha, “Grey-box
concolic testing on binary code,” in Proceedings of the
41st International Conference on Software Engineering,
ser. ICSE "19. IEEE Press, 2019, p. 736-747. [Online].
Available: https://doi.org/10.1109/ICSE.2019.00082

Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu,
and A. Tiu, “Steelix: Program-state based binary
fuzzing,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2017. New York, NY, USA: Association
for Computing Machinery, 2017, p. 627-637. [Online].
Auvailable: https://doi.org/10.1145/3106237.3106295

S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida,
and H. Bos, “Vuzzer: Application-aware evolutionary
fuzzing,” in 24th Annual Network and Distributed
System Security Symposium, NDSS 2017, San

Diego, California, USA, February 26 - March
1, 2017. The Internet Society, 2017. [On-
line]. Available: https://www.ndss-symposium.

org/ndss2017/ndss-2017-programme/
vuzzer-application-aware-evolutionary-fuzzing/

[19]

(20]

(21]

(22]

(23]

[24]
[25]

(26]

(27]

(28]

[29]

(30]

S. Roy, A. Pandey, B. Dolan-Gavitt, and Y. Hu, “Bug syn-
thesis: Challenging bug-finding tools with deep faults,”
in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, ser.
ESEC/FSE 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 224-234.

B. Dolan-Gavitt, “Of bugs and baselines,” http://moyix.
blogspot.com/2018/03/of-bugs-and-baselines.html,
2018.

J. Pewny and T. Holz, “EvilCoder: automated bug
insertion,” in Proceedings of the 32nd Annual
Conference on Computer Security Applications, ACSAC
2016, Los Angeles, CA, USA, December 5-9, 2016,
S. Schwab, W. K. Robertson, and D. Balzarotti,
Eds. ACM, 2016, pp. 214-225. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2991103

“Common vulnerabilities and exposures (cve),” https:
/leve.mitre.org/.

“CVE-2017-8395.” Available from MITRE, CVE-
ID CVE-2017-8395., 2017. [Online]. Avail-
able: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2017-8395

“Libfuzzer,” https://llvm.org/docs/LibFuzzer.html.

A. Fioraldi, D. Maier, H. Eif3feldt, and M. Heuse,
“AFL++ : Combining incremental steps of fuzzing
research,” in 14th USENIX Workshop on Offensive
Technologies, WOOT 2020, August 11, 2020, Y. Yarom
and S. Zennou, Eds. USENIX Association, 2020.
[Online]. Available: https://www.usenix.org/conference/
woot20/presentation/fioraldi

C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation
strategy for increasing greybox fuzz testing coverage,”
in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ser.
ASE 2018. New York, NY, USA: Association for
Computing Machinery, 2018, p. 475-485. [Online].
Auvailable: https://doi.org/10.1145/3238147.3238176

“Gnu binutils,” https://github.com/google/oss-fuzz/tree/
master/projects/binutils.

“Tcpdump 4.x.y by the tcpdump group,” https://github.
com/the-tcpdump-group/tcpdump.

“The xml c¢ parser and toolkit of gnome,” https://
github.com/google/fuzzbench/tree/master/benchmarks/
libxml2_libxml2_xml_reader for file fuzzer.

“A complete, cross-platform solution to record, con-
vert and stream audio and video.” https://github.com/
FFmpeg/FFmpeg.

https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://github.com/CyberGrandChallenge/
https://github.com/CyberGrandChallenge/
https://doi.org/10.1145/3428334
https://rode0day.mit.edu/
https://doi.org/10.1109/ICSE.2019.00082
https://doi.org/10.1145/3106237.3106295
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
http://moyix.blogspot.com/2018/03/of-bugs-and-baselines.html
http://moyix.blogspot.com/2018/03/of-bugs-and-baselines.html
http://dl.acm.org/citation.cfm?id=2991103
https://cve.mitre.org/
https://cve.mitre.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-8395
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-8395
https://llvm.org/docs/LibFuzzer.html
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://doi.org/10.1145/3238147.3238176
https://github.com/google/oss-fuzz/tree/master/projects/binutils
https://github.com/google/oss-fuzz/tree/master/projects/binutils
https://github.com/the-tcpdump-group/tcpdump
https://github.com/the-tcpdump-group/tcpdump
https://github.com/google/fuzzbench/tree/master/benchmarks/libxml2_libxml2_xml_reader_for_file_fuzzer
https://github.com/google/fuzzbench/tree/master/benchmarks/libxml2_libxml2_xml_reader_for_file_fuzzer
https://github.com/google/fuzzbench/tree/master/benchmarks/libxml2_libxml2_xml_reader_for_file_fuzzer
https://github.com/FFmpeg/FFmpeg
https://github.com/FFmpeg/FFmpeg

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

“libarchive - multi-format archive and compression li-
brary,” https://github.com/libarchive/libarchive.

“The systemd system and service manager,” https://
github.com/systemd/systemd.

M. Bohme, V.-T. Pham, and A. Roychoudhury,
“Coverage-based greybox fuzzing as markov chain,” in
Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS
’16. New York, NY, USA: Association for Computing
Machinery, 2016, p. 1032—-1043. [Online]. Available:
https://doi.org/10.1145/2976749.2978428

B. Zhang, J. Ye, C. Feng, and C. Tang, “S2f: Discover
hard-to-reach vulnerabilities by semi-symbolic fuzz test-
ing,” in 2017 13th International Conference on Compu-
tational Intelligence and Security (CIS), 2017, pp. 548—
552.

M. Bohme, V.-T. Pham, M.-D. Nguyen, and A. Roy-
choudhury, “Directed greybox fuzzing,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS "17. New
York, NY, USA: Association for Computing Ma-
chinery, 2017, p. 2329-2344. [Online]. Available:
https://doi.org/10.1145/3133956.3134020

D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and
S. Jana, “NEUZZ: efficient fuzzing with neural program
smoothing,” in 2019 IEEE Symposium on Security and
Privacy, SP 2019, San Francisco, CA, USA, May 19-23,
2019. IEEE, 2019, pp. 803—817. [Online]. Available:
https://doi.org/10.1109/SP.2019.00052

S. Nagy and M. Hicks, “Full-speed fuzzing: Reducing
fuzzing overhead through coverage-guided tracing,” in
2019 IEEE Symposium on Security and Privacy (SP),
2019, pp. 787-802.

D. A. Tomassi, N. Dmeiri, Y. Wang, A. Bhowmick, Y.-C.
Liu, P. T. Devanbu, B. Vasilescu, and C. Rubio-Gonzalez,
“Bugswarm: Mining and continuously growing a dataset
of reproducible failures and fixes,” in Proceedings of the
41st International Conference on Software Engineering,
ser. ICSE '19. IEEE Press, 2019, p. 339-349. [Online].
Available: https://doi.org/10.1109/ICSE.2019.00048

K. Liu, D. Kim, T. F. Bissyandé, S. Yoo, and
Y. L. Traon, “Mining fix patterns for findbugs
violations,” IEEE Trans. Software Eng., vol. 47,
no. 1, pp. 165-188, 2021. [Online]. Available:
https://doi.org/10.1109/TSE.2018.2884955

R. Rolim, G. Soares, R. Gheyi, and L. D’Antoni,
“Learning quick fixes from code repositories,” CoRR,
vol. abs/1803.03806, 2018. [Online]. Available: http:
/larxiv.org/abs/1803.03806

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix:
Learning to fix bugs automatically,” Proc. ACM
Program. Lang., vol. 3, no. OOPSLA, Oct. 2019.
[Online]. Available: https://doi.org/10.1145/3360585

D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch
generation learned from human-written patches,” in Pro-
ceedings of the 2013 International Conference on Soft-
ware Engineering, ser. ICSE °13. IEEE Press, 2013, p.
802-811.

K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, TBar:
Revisiting Template-Based Automated Program Repair.
New York, NY, USA: Association for Computing
Machinery, 2019, p. 31-42. [Online]. Available:
https://doi.org/10.1145/3293882.3330577

“CVE-2017-8392.” Available from MITRE, CVE-
ID CVE-2017-8392., 2017. [Online]. Avail-
able: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2017-8392

“CVE-2013-0211.” Available from MITRE, CVE-
ID CVE-2013-0211., 2013. [Online]. Avail-
able: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2013-0211

“Libtooling,” https://releases.llvm.org/8.0.0/tools/clang/
docs/LibTooling.html.

S. G. McPeak, “Elkhound: A fast, practical glr parser
generator,” USA, Tech. Rep., 2003.

“CVE-2017-7303.” Available from MITRE, CVE-
ID CVE-2017-7303., 2017. [Online]. Avail-
able: https://cve.mitre.org/cgi-bin/cvename.cgi’name=
CVE-2017-7303

P. D. Schubert, B. Hermann, and E. Bodden, ‘“Phasar:
An inter-procedural static analysis framework for c/c++,”
in Tools and Algorithms for the Construction and Anal-
ysis of Systems, T. Vojnar and L. Zhang, Eds. Cham:
Springer International Publishing, 2019, pp. 393—410.

T. Reps, S. Horwitz, and M. Sagiv, ‘“Precise in-
terprocedural dataflow analysis via graph reachabil-
ity,” in Proceedings of the 22Nd ACM SIGPLAN-
SIGACT Symposium on Principles of Program-
ming Languages, ser. POPL ’95. New York, NY,
USA: ACM, 1995, pp. 49-61. [Online]. Available:
http://doi.acm.org/10.1145/199448.199462

“Phasar v0521: a llvm-based static anal-
ysis framework,” https://github.com/
secure-software-engineering/phasar/tree/
aed66c04e6dbb3foef1bed4ad69b29aa0017bd9a.

https://github.com/libarchive/libarchive
https://github.com/systemd/systemd
https://github.com/systemd/systemd
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1109/SP.2019.00052
https://doi.org/10.1109/ICSE.2019.00048
https://doi.org/10.1109/TSE.2018.2884955
http://arxiv.org/abs/1803.03806
http://arxiv.org/abs/1803.03806
https://doi.org/10.1145/3360585
https://doi.org/10.1145/3293882.3330577
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-8392
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-8392
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0211
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0211
https://releases.llvm.org/8.0.0/tools/clang/docs/LibTooling.html
https://releases.llvm.org/8.0.0/tools/clang/docs/LibTooling.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7303
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7303
http://doi.acm.org/10.1145/199448.199462
https://github.com/secure-software-engineering/phasar/tree/aed66c04e6dbb3f6ef1bed4ad69b29aa0017bd9a
https://github.com/secure-software-engineering/phasar/tree/aed66c04e6dbb3f6ef1bed4ad69b29aa0017bd9a
https://github.com/secure-software-engineering/phasar/tree/aed66c04e6dbb3f6ef1bed4ad69b29aa0017bd9a

[52] C. Lattner and V. Adve, “Llvm: A compilation frame-

work for lifelong program analysis & transformation,”
in Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-Directed and
Runtime Optimization, ser. CGO '04. USA: IEEE

Computer Society, 2004, p. 75.

i

[53] Y. Smaragdakis and G. Balatsouras, ‘“Pointer analysis,
Found. Trends Program. Lang., vol. 2, no. 1,
p- 1-69, Apr. 2015. [Online]. Available: https:
//doi.org/10.1561/2500000014

[54] “Whole program llvm,” https://github.com/travitch/
whole-program-1lvm/.

[55] “Source level debugging with llvm,” https://releases.
Ilvm.org/10.0.0/docs/SourceLevel Debugging.html.

[56] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov, “Addresssanitizer: A fast address sanity
checker,” in Proceedings of the 2012 USENIX Confer-
ence on Annual Technical Conference, ser. USENIX
ATC’12. USA: USENIX Association, 2012, p. 28.

[57] “Undefinedbehaviorsanitizer,” https://clang.llvm.org/
docs/UndefinedBehaviorSanitizer.html.

[58] “Quality assurance testing for the curl project,” https:
//github.com/curl/curl-fuzzer.

[59] “Little-cms,” https://github.com/google/fuzzbench/tree/
master/benchmarks/lcms-2017-03-21.

[60] “A portable c/c++ library for network traffic cap-
ture,” https://github.com/google/fuzzbench/tree/master/
benchmarks/libpcap_fuzz_both.

[61] “Proj - cartographic projections and coordinate transfor-
mations library,” https://github.com/OSGeo/PROJ.

[62] “Sctp user-land implementation,” https://github.com/
weinrank/usrsctp.

)

[63] “Zstandard - fast real-time compression algorithm,
https://github.com/facebook/zstd.

[64] “Build ear,” https://github.com/rizsotto/Bear.

[65] “Phasar v1220: a llvm-based static anal-
ysis framework,” https://github.com/
secure-software-engineering/phasar/tree/
febddffe9e2ca98b4587e3ed4298dd02c1addale.

[66] D. Merkel, “Docker: lightweight linux containers for
consistent development and deployment,” Linux journal,
vol. 2014, no. 239, p. 2, 2014.

[67] “Fuzzbench report,” https://google.github.io/fuzzbench/
reference/report/.

[68]

[69]

[70]

[71]

[72]

“Fuzzer test suite,”

fuzzer-test-suite/.

https://github.com/google/

C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted
and automatic generation of high-coverage tests for
complex systems programs,” in Proceedings of the 8th
USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’08. USA: USENIX Asso-
ciation, 2008, p. 209-224.

L. Gazzola, D. Micucci, and L. Mariani, “Automatic soft-
ware repair: A survey,” IEEE Transactions on Software
Engineering, vol. 45, no. 1, pp. 34-67, 2019.

H. Zhong and Z. Su, “An empirical study on real bug
fixes,” in Proceedings of the 37th International Confer-
ence on Software Engineering - Volume 1, ser. ICSE *15.
IEEE Press, 2015, p. 913-923.

S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou, “Bug-
bench: Benchmarks for evaluating bug detection tools,”
in In Workshop on the Evaluation of Software Defect
Detection Tools, 2005.

https://doi.org/10.1561/2500000014
https://doi.org/10.1561/2500000014
https://github.com/travitch/whole-program-llvm/
https://github.com/travitch/whole-program-llvm/
https://releases.llvm.org/10.0.0/docs/SourceLevelDebugging.html
https://releases.llvm.org/10.0.0/docs/SourceLevelDebugging.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://github.com/curl/curl-fuzzer
https://github.com/curl/curl-fuzzer
https://github.com/google/fuzzbench/tree/master/benchmarks/lcms-2017-03-21
https://github.com/google/fuzzbench/tree/master/benchmarks/lcms-2017-03-21
https://github.com/google/fuzzbench/tree/master/benchmarks/libpcap_fuzz_both
https://github.com/google/fuzzbench/tree/master/benchmarks/libpcap_fuzz_both
https://github.com/OSGeo/PROJ
https://github.com/weinrank/usrsctp
https://github.com/weinrank/usrsctp
https://github.com/facebook/zstd
https://github.com/rizsotto/Bear
https://github.com/secure-software-engineering/phasar/tree/febddffe9e2ca98b4587e3ed4298dd02c1adda0e
https://github.com/secure-software-engineering/phasar/tree/febddffe9e2ca98b4587e3ed4298dd02c1adda0e
https://github.com/secure-software-engineering/phasar/tree/febddffe9e2ca98b4587e3ed4298dd02c1adda0e
https://google.github.io/fuzzbench/reference/report/
https://google.github.io/fuzzbench/reference/report/
https://github.com/google/fuzzer-test-suite/
https://github.com/google/fuzzer-test-suite/

	Introduction
	Developing a Fuzzing Benchmark
	Our proposal: FixReverter
	A New Benchmark: RevBugBench

	Bugfix Patterns
	FixReverter
	Bugfix Pattern Grammar
	Syntax Matcher
	Reachability & Dependence Analysis
	Bug Injection
	Bug Triage

	RevBugBench
	Target programs
	FixReverter usage
	FuzzBench Service Integration

	Experiments
	Does FixReverter inject bugs that fuzzers can actually find?
	Does FixReverter inject bugs that are hard to find?
	Do fuzzers find combination causes in RevBugBench?

	Related Work
	Conclusions and Future Work

