
Fuzzing Configurations of Program Options

ZENONG ZHANG, University of Texas at Dallas, USA
GEORGE KLEES, University of Maryland, USA
ERIC WANG, Poolesville High School, USA
MICHAEL HICKS, University of Maryland and Amazon∗, USA
SHIYI WEI, University of Texas at Dallas, USA

While many real-world programs are shipped with configurations to enable/disable functionalities, fuzzers
have mostly been applied to test single configurations of these programs. In this work, we first conduct an
empirical study to understand how program configurations affect fuzzing performance. We find that limiting a
campaign to a single configuration can result in failing to cover a significant amount of code. We also observe
that different program configurations contribute differing amounts of code coverage, challenging the idea that
each one can be efficiently fuzzed individually. Motivated by these two observations we propose ConfigFuzz,
which can fuzz configurations along with normal inputs. ConfigFuzz transforms the target program to encode
its program options within part of the fuzzable input, so existing fuzzers’ mutation operators can be reused
to fuzz program configurations. We instantiate ConfigFuzz on 6 configurable, common fuzzing targets, and
integrate their executions in FuzzBench. In our evaluation, ConfigFuzz outperforms two baseline fuzzers in
four targets, while the results are mixed in the other targets due to program size and configuration space. We
also analyze the options fuzzed by ConfigFuzz and how they affect the performance.

CCS Concepts: • Security and privacy→ Software security engineering; • Software and its engineer-
ing → Software testing and debugging.

ACM Reference Format:
Zenong Zhang, George Klees, Eric Wang, Michael Hicks, and Shiyi Wei. 2023. Fuzzing Configurations of
Program Options. ACM Trans. Softw. Eng. Methodol. 1, 1 (February 2023), 21 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Fuzz testing has been successful at detecting security vulnerabilities in standalone programs. Such
programs often have command-line options to enable/disable different functionalities at runtime.
We define the combinations of command-line options of a program as its configurations. In addition
to a configuration, a program typically takes input data, either from a file or stdin. Both the
configuration and input data determine the program code that is executed at runtime. However,
most fuzzers (and scientific evaluations thereof) focus on fuzzing the input data given a single, fixed
program configuration (e.g., [16, 19]), and may therefore fail to properly test significant portions

*Work done prior to starting at Amazon.
Authors’ addresses: Zenong Zhang, zenong@utdallas.edu, University of Texas at Dallas, Richardson, Texas, USA, 75080;
George Klees, george.t.klees@gmail.com, University of Maryland, College Park, Maryland, USA, 20742; Eric Wang,
ericzwang20841@gmail.com, Poolesville High School, Poolesville, Maryland, USA, 20837; Michael Hicks, mwh@cs.umd.edu,
University of Maryland and Amazon, College Park, Maryland, USA, 20742; Shiyi Wei, swei@utdallas.edu, University of
Texas at Dallas, Richardson, Texas, USA, 75080.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
1049-331X/2023/2-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Zenong Zhang, George Klees, Eric Wang, Michael Hicks, and Shiyi Wei

of a program’s functionality. As a result, potential rare bugs may escape detection, and scientific
evaluations of fuzzing performance may fail to account for the complete picture.

This paper considers the potential benefits of configuration-aware fuzzing. To start, we assess how
program configurations affect fuzzing performance by performing an empirical study that ran AFL
[2] on three common, configurable fuzzing targets (Section 3). We found that fuzzing configurations
with different option settings resulted in significant difference in code coverage, and some code
could only be reached by a unique configuration. For example, about 13% lines reached when
fuzzing FFmpeg [6] with sampled configurations were not reached by its default configuration.
This result suggests a missed opportunity to achieve higher code coverage and/or to find more
bugs than when a fuzzer is used to test a single configuration.
A simple remediation to this problem is to fuzz all valid program configurations. However, the

configuration space of real-world programs is often large, making it infeasible to exhaustively fuzz
all configurations. The software testing literature has conducted extensive research on this issue.
A widely adopted solution is combinatorial testing [17, 18], which proposes to test a sample of
configurations that covers certain properties of the configuration space (e.g., all pairs of options
appear in some configurations in the sample). In addition, dictionary- or grammar-based approaches
have been developed to fuzz program configurations [27, 29]. Program configurations generated
by these techniques can then be used as inputs to fuzz the program’s input file. However, lacking
further in-advance knowledge, prior techniques would spend equal time on each configuration even
though different configurations enable different amounts of reachable code; such equal treatment
wastes resources. AFL has an experimental argv_fuzzing feature [2] that fuzzes a program’s
argv along with program’s input data. While it is possible to fuzz program configurations with
argv_fuzzing by modeling them as unbounded strings in argv, we find this approach wastes
most of the time trying to reach a valid configuration.
The above observations motivated us to design ConfigFuzz, which enables efficiently fuzzing

the program configurations and the input data at the same time (Section 4). ConfigFuzz separates
a program’s input space into two parts: the configuration bytes and data bytes. We encode the
program options into the configuration bytes in a transformed program, and allow a fuzzer’s
mutation operators to decide when and how to mutate the program’s configurations during the
fuzzing campaign. As the configuration space is highly structured, ConfigFuzz’s encoding ensures
that the mutations on program options always generate valid configurations. At the same time, the
data bytes (i.e., the normal input data) are also mutated by the fuzzer, and given as an input of the
target program’s main function.

Specifically, ConfigFuzz takes a program’s options specification—essentially a grammar for the
options—as input. This specification distinguishes different option types (i.e., bool, choice, numeric,
and string) and specifies valid values of each option. For example, the valid values of a numeric
option are integer or real numbers that can be specified with a range. The specification is designed
in a way that users can freely control which options to fuzz and can disable certain combination
of options. This is because sometimes fuzzing program configurations may not be helpful. Some
command-line options are not developed to be used in a security-critical context, such as options
for experimental features. In addition, there may exist dependence or conflict relationship between
program options, and certain combinations of these options should be avoided when fuzzing
configurtions. For example, Clang’s options -march=mblaze and -msse4.2 have conflicts, and
using them together is meaningless [14].

Using the program’s options specification, ConfigFuzz outputs a C code wrapper that first parses
in an encoding of the options (i.e., configuration bytes) from the start of the program input, and then
invokes the main function of the target program with its options set to the decoded values; the
remaining input (i.e., data bytes) is used by the target program as usual. The fuzzer, e.g., AFL, fuzzes

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

Fuzzing Configurations of Program Options 3

the transformed (wrapped) program. This enables the fuzzer to mutate the option and/or its settings
during fuzzing. We design the expanded input to ensure that the mutation on a specific byte always
updates the setting of the same option, while mutation on a byte that decides a setting has no effect
when its associated option is not selected by the fuzzer. This makes the feedback mechanism built
in existing fuzzers useful for fuzzing configurations. ConfigFuzz is parameterized to decide the
number of program options (through a parameter that can be set in the options specification).

While the approach of ConfigFuzz is applicable to many languages, our current implementation
focuses on C programs. We used ConfigFuzz to transform six common fuzzing targets and carried
out the evaluation using a modified version of Google’s FuzzBench [7] framework, running the AFL
and AFL++ [19] fuzzers (Section 5). We compare ConfigFuzz’s fuzzing performance against that of
two baselines: (1) when always fuzzing the single default configuration; and (2) when fuzzing, in
sequence and with equal time, each of a sample of configurations drawn from 2-way covering arrays.
ConfigFuzz shows better performance than the baseline setups in four targets, while on the other
two targets, ConfigFuzz does not always outperform the baselines. We analyze the target programs’
source code and the options fuzzed by ConfigFuzz to reason about the fuzzing performance. We
also show that parameterizing ConfigFuzz to fuzz configurations with up to 2 options often leads
to higher code coverage than up to 1 option, while fuzzing many more options with ConfigFuzz
may decrease the performance.

This paper made the following contributions:

• An empirical study that motivates the importance of fuzzing configurations of program
options.

• ConfigFuzz, a tool that encodes program configurations, specified by a grammar, into the
input space to allow reusing existing fuzzing algorithms to fuzz program options.

• The implementation of ConfigFuzz that automatically generates configuration stubs and the
integration of ConfigFuzz into FuzzBench.

• An evaluation that shows ConfigFuzz’s performance comparing to the baselines, and an
analysis that provides insights on the behavior of ConfigFuzz.

2 RELATEDWORK
The idea of encoding the options into the program input space as a prefix to the actual input
was first proposed by AFL [2]; its experimental feature argv_fuzzing reads input from stdin

and puts it into argv. A function call to AFL_INIT_ARGV() needs to be inserted at the beginning
of the main function to enable argv_fuzzing. This approach does not require a configuration
grammar and encodes configurations automatically, relying on the program itself to reject invalid
ones. However, the option encoding chosen by AFL often leads to invalid configurations, causing
many early terminations which waste resources; this was observed by the AFL authors [1], and we
confirmed it with our own experiments. We thus adopted a more efficient encoding that ConfigFuzz
automatically generates based on a configuration grammar. Given that the grammar correctly
models a program’s configuration space, ConfigFuzz cannot find bugs in the program logic that
handles invalid configurations, while AFL’s argv_fuzzing feature can.

TOFU [27] is a directed fuzzer, meaning that it aims to drive the fuzzer to particular targets. Since
such targets might require certain options to be enabled, TOFU begins by fuzzing the option space,
using a grammar-based mutator to try different options and see what coverage they enable. It then
selects configurations that cover code close to the targets before starting fuzzing the program’s input
file. ConfigFuzz is more general: it enables exploring configurations along with fuzzing program
inputs, not just before, and it allows the reuse of existing general-purpose fuzzers’ mutators.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

4 Zenong Zhang, George Klees, Eric Wang, Michael Hicks, and Shiyi Wei

Table 1. Command-line options of target programs in the empirical study.

Program Bool Choice Numeric String
nm-2.37 13 1 0 0

gif2png-2.5.8 12 0 0 0
FFmpeg-n4.4 0 1 0 0

POWER [21] is a recently developed fuzzer which fuzzes a target program with configurations
in multiple steps. First, in its exploratory stage, POWER iteratively generates configurations using
dictionary-based mutation while also fuzzes the input files with byte-level mutation. Next, it selects
a set of configurations based on a relevance heuristic. Finally, its main fuzzing stage fuzzes the
input files using the selected configurations as the seed corpus. Different from POWER, ConfigFuzz
fuzzes configurations together with the input files throughout the fuzzing process, and allows
reusing existing fuzzers’ mutation operators by taking an expanded input that encodes the program
options.

The Fuzzing Book [29] introduces a tool that automatically extracts command-line options and
infers a configuration grammar. The tool then uses the inferred grammar to generate configurations
to fuzz, assigning equal amount of resources on each configuration. As already mentioned, assigning
each configuration equal weight very likely wastes resources since different configurations offer
uneven amounts of reachable code; ConfigFuzz addresses this problem by fuzzing the options and
the rest of the input together. The Fuzzing Book tool also complements ConfigFuzz by automatically
extracting the configuration space of the target program.
OpFuzz [28] and TypeFuzz [24] fuzz configurations of SMT solvers. Both approaches fuzz

configurations by first defining a popular configuration as a default mode for each SMT solver, and
then fuzzing more configurations by introducing additional options on top of the default modes.
Both fuzzers found most of the bugs in the default modes, and observed that few bugs were found
under the configurations that included more than 2 additional options on top of the default modes.
Their results show that it is infeasible to fuzz each configuration separately, and motivate us to
develop an efficient approach to allocate different resources on different configurations during
fuzzing.

3 HOW PROGRAM CONFIGURATIONS AFFECT FUZZING PERFORMANCE?
We perform an empirical study to understand how configurations make a difference in fuzzing
outcomes. While it is expected that different configurations could result in different part of code
being executed, there is no prior study that focuses on understanding how tuning a program’s
configurations would affect a fuzzer’s results in terms of code coverage. The answer to this question
can be used to motivate the design of a fuzzer that fuzzes configurations.

3.1 Study Setup
We chose nm-2.37 [11], gif2png-2.5.8 [9], and FFmpeg-n4.4 [6] as the target programs for this study.
These programs are popular fuzzing targets [25][16][20] with command-line options. We inspected
the configuration documentation of each target program to understand its allowed options. We
found that each command-line option falls into one of four possible types:

• Bool: the setting of a bool option is a binary value to decide the presence.
• Choice: the setting of a choice option is an element in a finite set of possible choices.
• Numeric: the setting of a numeric option is either an integer (i.e., the intnum subtype) or a
real number (i.e., the realnum subtype).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

Fuzzing Configurations of Program Options 5

Table 2. Total and unique line coverage for FFmpeg configurations.

Default -f mpeg -f mp4 -f flv -f h264 -f webm all configs
of all lines 56183 41902 36124 33582 21082 2640 63884

of unique lines 9578 1749 1975 2048 272 237 -
% of unique lines 17% 4% 5% 6% 1% 9% -

Table 3. Total and unique line coverage for nm configurations.

-l –synthetic -g –w-sym-v2 -s –size-sort
of all lines 13525 12908 12678 12612 12511 12495

of unique lines 1426 275 35 5 3 159
% of unique lines 11% 2% 0% 0% 0% 1%

-u -r -A -n –special-syms –defined-only
of all lines 12484 12480 12451 12356 12255 12106

of unique lines 13 11 9 44 1 5
% of unique lines 0% 0% 0% 0% 0% 0%

-D -f bsd -f posix -f sysv all configs
of all lines 11056 1409 1409 1409 15243

of unique lines 29 4 4 4 -
% of unique lines 0% 0% 0% 0% -

• String: the setting of a string option is an arbitrary string.1

To answer how program configurations affect fuzzing performance, we generate multiple config-
urations of each program, and perform fuzzing runs on each generated configuration to compare
their code coverage. We used a subset of the command-line options of each program, shown in
Table 1. For nm, we generated 13 configurations, each enabling one of its 13 bool options. We also
generated three configurations from the choice option -f, which has three settings bsd, posix
and sysv. Specifically, bsd is the default setting. As a result, we used 16 nm configurations for
this preliminary study. For gif2png, we generated 12 configurations, each enabling one of its 12
bool options. In addition, we used a default configuration that does not turn on any of its option,
totaling 13 gif2png configurations. FFmpeg has a much larger configuration space; we selected
5 settings (flv, mpeg, h264, mp4, and webm) for an important choice option -f, which forces the
format of FFmpeg’s audio and video conversion. We also used a default configuration with only -i
option turned on to accept input file, totaling 6 FFmpeg configurations.

We used AFL-2.52b as the fuzzer for this preliminary study. We ran 5 trials for each configuration,
and every trial ran for 24 hours. All programs used two seeds: a seed with corresponding file format
distributed by AFL (e.g., we used a small gif file as the seed for gif2png), and the default invalid
seed used by FuzzBench (a text file of string hi). Line coverage was extracted by llvm-cov [10] after
the completion of each AFL trial.

3.2 Study Results
Overall, we observed that different configurations contributed disproportionally to code coverage,
while almost every individual configuration enabled some unique code to be reached. This result
strongly motivates the design of an effective fuzzer for program configurations.
1The constraints of a string option are usually not shown in the configuration documentation, even if the programs may
check the valid settings of a string option at runtime (e.g., through regular expressions).
2Abbreviation for the configuration --with-symbol-versions.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

6 Zenong Zhang, George Klees, Eric Wang, Michael Hicks, and Shiyi Wei

Table 4. Total and unique line coverage for gif2png configurations.

-h -g -v -r -m -p -f
of all lines 2898 2884 2861 2860 2847 2844 2839

of unique lines 63 49 18 55 12 9 4
% of unique lines 2% 2% 1% 2% 0% 0% 0%

-O Default -i -s n -w all configs
of all lines 2834 2829 2829 2818 2714 570 3108

of unique lines 13 0 3 3 3 13 -
% of unique lines 0% 0% 0% 0% 0% 0% -

Table 2 shows the total and unique numbers of lines covered by each configuration in FFmpeg.
We report the number of lines covered by each configuration by aggregating the distinct lines in
all 5 trials. A unique line (third row) means that this code was only reached in the fuzzing runs
of a specific configuration, and we also show the percentage of these unique lines of all the lines
covered by each configuration (fourth row). The last column of Table 2 (“all configs") shows the
number of distinct lines covered in the fuzzing runs of the FFmpeg configurations.
We observe that while the default configuration covered the most code, only 88% of all code

covered by fuzzing these six configurations was due to the default configuration. This indicates
limiting runs to a single program configuration, as most past fuzzing experiments have done (e.g.,
[16, 19]), is a missed opportunity to reach more code. We also see that different configurations make
different contributions to the overall code coverage. The default, -f mpeg, -f mp4, and -f flv

configurations all covered more than 30000 lines of code, but fuzzing the configuration -f webm

only covered about 2600 lines. Nevertheless, there are unique lines only covered by each FFmpeg
configuration. About 17% of the lines covered by the configuration Default were unique; even the
configuration that covered the least code (-f webm) had 237 unique lines. This result is consistent
with what we observed from the code investigation on these configurations. The settings of -f
option, which specify the format of FFmpeg’s audio and video conversion, reach very different
parts of FFmpeg’s implementation.
Table 3 shows the total and unique numbers of lines covered by each configuration in nm. All

configurations covered some unique lines. However, unlike FFmpeg where each configuration
covered about 300-9600 unique lines (accounting for 1% to 17% of all lines covered by each configu-
ration), 75% (12 out of 16) nm configurations covered less than 50 unique lines. Through manual
investigation, we found that it is important to test the option -l, because it controls about 100
lines of code in the nm.c file to find a filename and line number for each symbol with debugging
information. This explains why fuzzing the -l configuration covered the most lines and many
unique lines in Table 3. The configurations that covered the least numbers of lines are those that
set the -f option. This is surprising because the settings of -f decide the output format. After
investigating the fuzzing log, we found that AFL ignored the valid seed and kept fuzzing the invalid
seed, and therefore was unable to generate any new seed in 24 hours.

Table 4 illustrates the aggregated and unique lines covered for each gif2png configuration. Table
4 shows that all but one configurations covered between 2700 and 2900 lines, a smaller variance in
terms of line coverage. This is because all command-line options except for -w differ in only a few
branches in gif2png. The configuration -w exits gif2png earlier compared to other configurations,
therefore only covered 570 lines of code.
In summary, program options often decide unique branches to execute in a target program,

which make fuzzing different configurations contribute disproportionally to code coverage. The

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

Fuzzing Configurations of Program Options 7

ConfigFuzz

Program

Configuration
Documentation

Configuration
Grammar

Configuration
Stub

Generation

Configuration
Stub

Injection

Program with
Fuzzable

Configurations
Fuzzing with ConfigFuzz

Fuzzable Input

Config
Bytes

Data
Bytes

Stub

Command-line
Options

Input Data

Program
Execution

&
Fuzzable

Input
Mutation

ConfigFuzz
Results

Fig. 1. Overview of ConfigFuzz.

unique branches sometimes resulted in a few more statements being executed compared to the
default configuration, but sometimes direct the program execution to a very different route.

4 CONFIGFUZZ
Our study results suggest that different configurations can have differing levels of impact on fuzzing
code coverage. To best allocate different resources to a fuzzing task, we should prioritize fuzzing the
configurations that are likely to lead to more coverage. However, it is difficult to know in advance
which are the high-coverage configurations.

We propose ConfigFuzz to address this challenge by transforming the target program to integrate
configurations into the program input that is subject to fuzzing. This allows the fuzzer to change
the configuration on the fly if doing so will improve coverage. ConfigFuzz requires a grammar
of the configuration accepted on the target program’s command line, and uses these to drive the
transformation. The transformed program effectively allows the fuzzer to mutate expanded inputs,
which include both a configuration part and a normal input data part.

Figure 1 shows an overview of ConfigFuzz and how to fuzz with ConfigFuzz. Given a target
program and its configuration documentation as inputs, the test engineer first constructs a formatted
configuration grammar file. This grammar describes each fuzzable program option with its type
and constraints (e.g., valid range of a numeric option). The configuration stub generator then uses
this grammar to create a C-code stub that decodes binary input into a set of options. In particular,
the stub is fed the expanded fuzzable input, whose prefix consists of configuration bytes and whose
remainder consists of data bytes. It decodes the configuration bytes into a set of command-line
options and their settings which it writes into argc and argv. It directs the remaining data bytes
into the program’s input stream (e.g., stdin or an input file path). The generated stub is injected
into the start of the target program’s main function. Doing so allows any fuzzer’s original algorithm
(e.g., the mutator) to fuzz both the program’s input configuration and its normal input at once.

4.1 Configuration Grammar
The configuration grammar describes the allowed command-line options and settings of a program.
Each option is specified using an identifier (id), name, and type. There are five possible types:

• bool: a command-line option that is either present or not present. Its setting is a boolean
value to decide the presence.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

8 Zenong Zhang, George Klees, Eric Wang, Michael Hicks, and Shiyi Wei

1 {

2 "input options": ["-i"],

3 "options":

4 [{"id": 0,"opt": "-f", "type": "choice",

5 "choices":

6 ["mp4", "mpeg", "webm", "h264", "flv"]},

7 {"id": 1,"opt": "-vframes",

8 "type": "numeric", "range": [0,432000]},

9 {"id": 2,"opt": "-vn", "type": "bool"},

10 {"id": 3,"opt": "-filter",

11 "type": "string"}],

12 "dependence": [],

13 "conflict":

14 [["-vn", "-vframes"]],

15 "strmax": 19,

16 "maxopts": 2

17 }

Fig. 2. An excerpt of configuration grammar of FFmpeg.

• choice: a command-line option whose setting is a element in a finite set of possible choices.
• intnum: a command-line option whose setting is a number with no fractional part.
• realnum: a command-line option whose setting is a number with a fractional part.
• string: a command-line option whose setting is an arbitrary string.

Type bool and choice have finite number of settings, while intnum, realnum and string have arbitrarily
large setting space.
The configuration grammar is expressed using a simple JSON format; an example is shown in

Figure 2. A program may take input files in different ways. For example, FFmpeg takes an input
file with its -i option, specified in line 2. For programs taking input data from stdin, an input
option <will be specified in the grammar, so that data in input file will be redirected to stdin. For a
choice option, the possible settings are listed in the choices field. For example, lines 4-6 specify that
the choice option -f has the five settings: flv, mpeg, h264, mp4 and webm. For a numeric option,
the range field is used to specify the range of its valid values. For example, lines 7-8 specify that
the valid range of the intnum option -vframes is 0 to 43200. When the range of a numeric option
is not given, this option is potentially unbounded; instead, we use the range of int and double
types in C as the default range for intnum and realnum options, respectively. Line 9 specifies a bool
option -vn. For all string options, like -filter on lines 10-11, the strmax field is used to specify
their maximum number of characters. Line 15 specifies that at most 19 characters are allowed for
all string option settings in FFmpeg.3

When manually inspecting the configuration documentation, we also identified that there exist
two types of interactions among command-line options: dependence and conflict. Similar interactions
between the program options were identified by Mordahl and Wei in other configurable software
[22]. We say option A depends on option B when option A can only be set if the bool option B is
set. We say option A conflicts with option B when at most one of the two options can be set in the
program’s configuration. For example, lines 13-14 specifies that -vn conflicts with -vframes.

3We use strmax=19 as the default value for ConfigFuzz.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

Fuzzing Configurations of Program Options 9

ProcessOption Byte Option Byte Setting Bytes Data Bytes

maxcombs number of options

Configuration Bytes

Setting Bytes Setting Bytes

Fig. 3. Structure of ConfigFuzz expanded input.

Lastly, we use the maxopts field to enforce a maximum degree of option combinations that may
be generated during fuzzing. Line 16 specifies that configurations with up to 2 options explicitly
set can be generated.

Note that the configuration grammar does not need to be accurate for ConfigFuzz to work. Invalid
command-line options often cause immediate failures when a program executes, and fuzzers will
not waste much resources on them. The same situation also applies on option interactions, where
fuzzers will not prioritize invalid option combinations. Therefore, we expect ConfigFuzz to still
work with a slightly incorrect grammar. In addition to correctly describing the configuration space
of a program, the option interactions in the grammar also enables users to customize the fuzzing
space. For example, users can turn off certain combinations of options that come with meaningless
errors, as discussed in [14].

4.2 Configuration Stub Generation
ConfigFuzz transforms the target program to take an expanded input that contains both its config-
uration and its data input. This expanded input, with configuration bytes followed by data bytes
is processed by an automatically generated C-code stub. The stub decodes the options from the
configuration bytes, and redirects the remaining data bytes to program’s main input channel. This
stub is injected at the beginning of a program’s main function (see Section 4.3).

The configuration data is encoded in the expanded input as shown in Figure 3. The configuration
bytes precede the data bytes, and these configuration bytes are divided into two parts: the bytes
responsible for encoding which options to turn on (i.e., option bytes), and the bytes responsible for
encoding which setting to use for an option (i.e., the group of setting bytes that follows the option
bytes).

The number of bytes needed for option bytes is decided by maxopts specified in the configuration
grammar, that is, at most maxopts options are turned on in the generated configurations. One byte
is needed to encode each option assuming a program does not have more than 256 options. The
rest of the configuration bytes are used for encoding the setting of each option in the configuration
grammar. For the setting bytes of each option, the number of bytes needed is decided by the option
type and its constraint. Specifically, (1) a bool option needs 1 byte, (2) a choice option needs ceiling
of log256 [𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑐ℎ𝑜𝑖𝑐𝑒𝑠] bytes, (3) a numeric option needs ceiling of log256 [𝑠𝑖𝑧𝑒_𝑜 𝑓 _𝑟𝑎𝑛𝑔𝑒]
bytes, where the size of range is computed by subtracting the lower bound from the upper bound,
both specified in the configuration grammar, and (4) a string option needs strmax+1 bytes, where
strmax is specified in the configuration grammar.
Figure 4 shows the pseudocode for part of a configuration stub generated with the grammar

described in Figure 2 for FFmpeg. Line 1 reads two option bytes from the input (the first two bytes),
as maxopts is set as 2 in our example. Line 2 reads the next byte from the input as the setting bytes
of option_id=0; 1 byte is read because in our example, this option (-f) is a choice option with 5

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

10 Zenong Zhang, George Klees, Eric Wang, Michael Hicks, and Shiyi Wei

1 opt_bytes = read_next_k_bytes(2)

2 setting_bytes_arr[0] = read_next_k_bytes(1)

3 ...

4 data_bytes = read_remaining_bytes()

5 for opt_byte in opt_bytes:

6 opt_id = opt_byte %

7 option = options[opt_id]

8 setting_bytes = setting_bytes_arr[opt_id]

9 if opt_id == 0:

10 setting_id = setting_bytes %

11 if setting_id == 0:

12 setting = "mp4"

13 else if setting_id == 1:

14 setting = "mpeg"

15 else if setting_id == 2:

16 ...

17 argv = argv + option + setting

18 argc += 2

19 ...

20 fn = dump_bytes_to_file(data_bytes)

21 argv = argv + "-i" + fn

22 argc += 2

Fig. 4. Configuration stub pseudocode generated for FFmpeg.

choices, and 1 byte is large enough to encode them. The omitted code at line 3 reads the setting
types for each remaining option. Line 4 reads the remaining data into data bytes, which is later
used as program input. For each option byte, lines 6 and 7 transform it into an option. The option
id is determined by taking the reminder of the option byte divided by the total number of options
(4 in our example, as shown on line 6). The option is then looked up in the options array (which
is generated with the rest of the stub when processing the configuration grammar), per line 7. Line
8 retrieves the setting bytes per the option id. Lines 9–16 decode the setting of option -f, which is a
choice-type option. First, a setting_id is calculated from the setting bytes, and then this byte is
used to select the actual choice. Other option types are encoded as follows:

• For a bool option, its setting is empty (i.e., turning on the bool option only requires adding
the option to the argument without a setting).

• For a numeric option, we first obtain the range of the option and then the encoding is based
on the setting bytes and the range. Specifically, we follow two equations for the calculation:
rsize=range.max-range.min+1 and setting=range.min+setting_bytes%rsize.

• For a string option, its setting is directly transformed from the setting bytes with string type
cast.

Returning to Figure 4, lines 17 and 18 append the option and setting strings to argv and increment
argc of the program based on the encoding. These simulate the command-line arguments given
to the main function. We update argc and argv the same way on all options except bool options.
Because bool options do not have any setting, we only append the option string to argv and
increment argc by 1. Finally, in lines 20 – 22, we dump the data bytes into an in-memory file,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

Fuzzing Configurations of Program Options 11

Table 5. Command-line options of target programs in the evaluation.

Program Bool Choice Numeric String Total
cxxfilt-2.37 7 1 0 0 8
FFmpeg-n4.4 7 3 8 12 30
gif2png-2.5.8 14 0 1 0 15
nm-2.37 20 4 0 1 25

objdump-2.37 30 7 5 6 48
xmllint-2.9.12 49 1 1 7 58

append argv with the input options (i.e., -i for FFmpeg) and file name, and increment argc
accordingly.
This structure for configuration bytes’ encoding ensures that each byte can always be legally

interpreted as specifying an option or its setting. As a result, a mutation performed on the same
byte always properly updates the encoded option or setting, making the coverage feedback of a
fuzzer more efficient. We call this encoding the hash encoding. One limitation of hash encoding is
that it may not encode options and settings with equal probability. For example, we use one option
byte to encode a program with 255 command-line options; one option (option_id=0) will have a
higher probability of being selected. We may allocate more bytes for selecting an option or a setting
to remediate this problem, but it makes the input larger which may reduce fuzzing effectiveness.

4.3 Configuration Stub Injection
The stub injection step of ConfigFuzz takes the source code of the generated stub, and injects it into
the beginning of the target program’s main function, implemented with a Python script. The stub
modifies main’s parameters argc and argv to hold the decoded options. ConfigFuzz assumes that
a fuzzer will run the transformed program with the expanded input and no other command-line
options because the command-line options are written by the injected stub. Therefore, the inputs of
the stub will usually be argc of 2 and argv[1] being the path to a file storing the expanded input.

The modified parameters are then given to the rest of the main function, mimicking the situation
where command-line options are stored in argv, and a fuzzer fuzzes the program along with
configurations.

5 EVALUATION
We conducted experiments to evaluate ConfigFuzz, comparing its performance on different settings
against two baseline setups: one fuzzes a default configuration and the other samples configurations
drawn from covering arrays. In this section, we present the setup and results of the experiments.

5.1 Experimental Setup
5.1.1 Target Programs and Fuzzers. ConfigFuzz-transformed programs are compatible with most
existing fuzzers. In the evaluation, we ran experiments using two fuzzers: AFL-2.57b [2] and AFL++-
3.14a [19]. Using more than one fuzzer, we can check if performance of ConfigFuzz is consistent in
both fuzzers, and/or if the behavior is specific to a fuzzer.
The experiments were run on six popular fuzzing targets: cxxfilt-2.37 [5], FFmpeg-n4.4 [6],

gif2png-2.5.8[9], nm-2.37 [11], objdump-2.37 [12], and xmllint-2.9.12 [13]. We ran both fuzzers
on five programs, but ran only AFL on gif2png-2.5.8 because we could not build gif2png-2.5.8
with AFL++. Table 5 shows the configuration space of these target programs; the numbers of
command-line options ranging from 8 (cxxfilt) to 58 (xmllint).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

12 Zenong Zhang, George Klees, Eric Wang, Michael Hicks, and Shiyi Wei

5.1.2 ConfigFuzz Settings and Baselines. We experimented with five settings of ConfigFuzz. Specif-
ically, we set maxopts to 1, 2; i.e., fuzzing configurations with at most 1 and 2 options explicitly
set. We also set maxopts to the total number of options in each program, We call these three
variations as ConfigFuzz-1, ConfigFuzz-2 and ConfigFuzz-max. We excluded string options from
ConfigFuzz’s configuration grammar to be consistent with the baselines because a sample-based
baseline could not always generate valid string settings, as explained below.
We compared ConfigFuzz-1, ConfigFuzz-2 and ConfigFuzz-max with two baselines. The first

baseline (called Baseline-def) fuzzes only the default configuration of the target program. The second
baseline (called Baseline-2-way) fuzzes a sample of configurations generated by two-way covering
arrays [23]. Such sample contains two-way combinations of all option settings [18], enhancing the
likelihood of discovering interactions compared to just a random sample. We considered two-way
interactions to reduce the configuration space, and because it is commonly assumed that most faults
are caused by the interaction of only a few features [26]. We used ACTS 3.2, a combinatorial testing
tool from NIST [3], to generate the configuration samples. We included all settings of bool options
and choice options with less than 50 settings. On objdump and FFmpeg, choice options with more
than 50 settings cause the number of covering arrays to explode and fail the program execution.
Therefore, a random sample of 10 settings are taken on these options. For numeric options, we took
the lower and upper bound of the range, and randomly sampled 8 numbers in between to generate
10 choices. For string options, considering a randomly sampled string is mostly likely to yield an
invalid setting, we removed all strings options from the configuration grammar. As a result, 17,
294, 22, 2567, 362 and 46 sample configurations were generated for cxxfilt, FFmpeg, gif2png, nm,
objdump, and xmllint, respectively. To fairly compare with ConfigFuzz, we modified the fuzzing
process to fuzz an equal amount of time for each sampled configuration (i.e., [total time]/[number
of configurations]) in sequence, while retaining the seeds from previous fuzzing progress.

The remaining two settings enable string options. Similar to ConfigFuzz-1 and ConfigFuzz-2, we
explicitly set at most 1 and 2 options during fuzzing with the entire configuration grammar, and
call them ConfigFuzz-str-1 and ConfigFuzz-str-2. Results of ConfigFuzz-str-1 and ConfigFuzz-str-2
are compared with ConfigFuzz-1 and ConfigFuzz-2 to evaluate the impact of fuzzing configurations
that include string options.

5.1.3 Research questions. Our experiments answer three research questions:
• RQ1: Does ConfigFuzz outperform baselines?
• RQ2: How do ConfigFuzz-1, ConfigFuzz-2 and ConfigFuzz-max compare?
• RQ3: How does ConfigFuzz perform on string options?

For RQ1, we check if ConfigFuzz can result in more code coverage than fuzzing Baseline-def
and Baseline-2-way. For RQ2, we check if ConfigFuzz-2, which can generate configurations that
interact with 2 options, can result in more code coverage than ConfigFuzz-1 to assess the importance
of fuzzing the interactions among program options. Moreover, we compare the performance of
ConfigFuzz-max, which does not limit the number of configuration interactions, with ConfigFuzz-
1 and ConfigFuzz-2 to study how highly interacted configurations affect fuzzing performance.
For RQ3, we compare the results of ConfigFuzz-str-1 and ConfigFuzz-str-2, with ConfigFuzz-1
and ConfigFuzz-2 to evaluate how fuzzing configurations with string options contributes to code
coverage.

5.1.4 Experimental design. We integrated ConfigFuzz into FuzzBench [7] to allow reproducible and
reusable experiments. We added ConfigFuzz transformed programs into FuzzBench benchmarks,
and specified the fuzzing targets to be the executables containing the modified main functions.
FuzzBench originally expected LibFuzzer harnesses as entry points (compiled with Clang [4] and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

Fuzzing Configurations of Program Options 13

(a) AFL-xmllint (b) AFL++-xmllint

Fig. 5. Line coverage growth plots on xmllint

Table 6. Top 5 most frequently fuzzed options xmllint with AFL.

ConfigFuzz-1 ConfigFuzz-2 ConfigFuzz-max ConfigFuzz-str-1 ConfigFuzz-str-2
–html (32%) –html (36%) –sax1 (87%) –html (29%) –html (42%)

–recover (16%) –repeat (22%) –recover (68%) –xpath (16%) –xpath (23%)
–repeat (8%) –recover (19%) –debug (68%) –recover (11%) –repeat (15%)
–stream (6%) –maxmem (13%) –debugent (60%) –repeat (7%) –recover (14%)

–maxmem (5%) –sax1 (13%) –copy (45%) –stream (5%) –sax1 (12%)

the fsanitize-coverage=trace-pc-guard flag), while ConfigFuzz is designed to fuzz whole
programs with command-line options. We modified the FuzzBench scripts to allow running fuzzers
on the whole programs following AFL’s tutorial [8]. Specifically, the modified scripts build fuzzing
targets using each fuzzer’s own compiler for instrumentation, and the command to run each
fuzzer was also updated accordingly to ensure the expanded input is correctly passed to the target
programs, as discussed in Section 4.3.

We ran each of ConfigFuzz-1, ConfigFuzz-2, ConfigFuzz-max, ConfigFuzz-str-1, ConfigFuzz-str-2,
Baseline-def, and Baseline-2-way on each program with 5 trials and 24-hour timeout. We report the
median number of lines covered by each fuzzer after post-processing code coverage using llvm-cov
[10]. For each of the five programs, we used an invalid seed which is Fuzzbench’s default seed (a
text file containing string hi) and one valid seed taken from AFL’s repository [2] as seeds. There
does not exist a valid seed for cxxfilt in AFL’s repository; instead, we used the mangled version
of function name f() as the valid seed for cxxfilt. The invalid seed for cxxfilt is the same text file
as the other 5 programs. As ConfigFuzz takes part of the input data as configuration bytes, the
remaining data bytes will not form a valid seed. Therefore, for each ConfigFuzz setup we prepended
bytes on the original seeds to make sure the data bytes are valid.
All experiments were conducted on a server with 2 Intel Xeon Silver 4116 CPUs (each with 24

cores) and 192GB of RAM running Ubuntu 16.04.

5.2 Results
5.2.1 RQ1: Does ConfigFuzz outperform baselines? Figures 5 to 7 show line coverage growth of
each fuzzer over time on all the six target programs. Results of default (Baseline-def), ConfigFuzz-1,
ConfigFuzz-2,ConfigFuzz-max and covering arrays (Baseline-2-way) are represented by lines in
black, blue, red, orange and green, respectively.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

14 Zenong Zhang, George Klees, Eric Wang, Michael Hicks, and Shiyi Wei

(a) AFL-cxxfilt (b) AFL++-cxxfilt

(c) AFL-FFmpeg (d) AFL++-FFmpeg

(e) AFL-gif2png

Fig. 6. Line coverage growth plots on cxxfilt, FFmpeg and gif2png.

Overall, the performance of ConfigFuzz varied based on the target programs. ConfigFuzz clearly
outperformed the baselines on xmllint, gif2png, cxxfilt and FFmpeg, as a result of ConfigFuzz
prioritizing configurations that may lead to larger code coverage. However, Baseline-2-way and/or
Baseline-def achieved higher coverage on nm and objdump. In general, ConfigFuzz performed
better than the baseline settings on programs that can be well-explored in the 24-hour timeout (i.e.,
xmllint, gif2png, and cxxfilt) by effectively allocating resources in the whole configuration space. It

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

Fuzzing Configurations of Program Options 15

is also possible for ConfigFuzz to perform well on more complicated programs (i.e., FFmpeg) due to
the same reason. While on other complicated programs (i.e., nm and objdump), ConfigFuzz may
spend a lot resources fuzzing the configurations that continuously generate new coverage, but not
noticing that exploration of the other configurations may lead to even more coverage. We now
analyze the performance on each program in detail.
For xmllint (Figures 5a and 5b), every setting of ConfigFuzz outperformed the two baselines

by a large margin for both AFL and AFL++. ConfigFuzz-1, ConfigFuzz-2 and ConfigFuzz-max not
only achieved higher coverage than Baseline-def and Baseline-2-way at a very early stage of the
fuzzing campaign, but also grew faster. This is a strong indication that ConfigFuzz outperformed
the baselines by exploring more command-line options. For both AFL and AFL++, Baseline-def
only covered less than 7000 lines while every setting of ConfigFuzz covered more than 15000 lines.
This result indicates that a large portion of xmllint code may not be reachable through its default
configuration. Using more preset configurations (Baseline-2-way) did increase the coverage of the
fuzzers, reaching 13000 lines, but still less effective than ConfigFuzz.
To provide more insights on how ConfigFuzz performed during the fuzzing campaign, we

collected all the generated seeds and extracted their configurations. We analyzed the distribution
of the options that appeared in these configurations. Columns 1-3 in Table 6 show the 5 most
frequent options in ConfigFuzz-1, ConfigFuzz-2, and ConfigFuzz-max results. Most options rarely
appeared (less than 5%) in the generated configurations. The three most frequent options in
ConfigFuzz-1 results were -html, -recover, and -repeat; they appeared 15523, 7622, and 4004
times, respectively. These options were also frequently fuzzed by ConfigFuzz-2 and ConfigFuzz-max.
This shows that ConfigFuzz was able to frequently fuzz these non-default options that led to higher
coverage. By investigating the source code, we observed that enabling -html and/or -recover
allows ConfigFuzz to reach many unique lines. On the other hand, enabling the -repeat option
would iteratively execute xmllint’s main functionality (which parses and prints the input xml file)
100 times. This may confuse the fuzzers on its potential to generate new coverage.

Results on cxxfilt (Figures 6a and 6b), FFmpeg (Figures 6c and 6d) and gif2png (Figure 6e) show
similar trend where all settings of ConfigFuzz outperformed the two baselines, while Baseline-def
always performed the worst. ConfigFuzz also consistently fuzzed a small set of options more
frequently across the three ConfigFuzz settings. Different from xmllint, these frequently fuzzed
options in gif2png did not contribute much to ConfigFuzz’s performance. Actually, the number of
unique lines exposed by enabling each individual option in gif2png is usually small. Nevertheless,
fuzzing all options led to ConfigFuzz outperforming Baseline-def. The option -w caused the poor
performance of Baseline-2-way. By enabling -w, gif2png lists images without animation or trans-
parency, and exits earlier compared to other options. Baseline-2-way has about half of its 2-way
covering arrays enabling -w. On the other hand, ConfigFuzz allocated much less resources on -w.
Unlike xmllint, the baselines produced better coverage at some stages of the fuzzing campaigns.
For example, for AFL-cxxfilt, Baseline-def achieved higher coverage than ConfigFuzz in the first
two hours but was eventually surpassed in a few hours. This result suggests that ConfigFuzz
may not always find the most effective configurations to fuzz at the beginning but was capable
of finding such configurations given time. The most frequently fuzzed options by ConfigFuzz in
cxxfilt, --format and -t, are both important. The main functionality of cxxfilt is to demangle
a string, and the settings of --format decide the demangling style. Similar to the -w option in
gif2png, disabling -t terminates cxxfilt’s execution earlier compared to other options.
The results on nm (Figures 7a and 7b), on the other hand, show that ConfigFuzz performed

worse than both baselines. Baseline-2-way was significantly better than other approaches, reaching
15000 and 17500 lines using AFL and AFL++, respectively. Even Baseline-def outperformed all
ConfigFuzz settings. To understand this behavior, in Table 7, we extracted the 10 most frequently

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

16 Zenong Zhang, George Klees, Eric Wang, Michael Hicks, and Shiyi Wei

(a) AFL-nm (b) AFL++-nm

(c) AFL-objdump (d) AFL++-objdump

Fig. 7. Line coverage growth plots on nm and objdump.

Table 7. Top 10 most frequently fuzzed options of nm with AFL.

ConfigFuzz-1 ConfigFuzz-2 ConfigFuzz-max
–target (25%) –target (60%) –target (81%)

–defined-only (22%) -a (15%) -a (50%)
-a (11%) -S (13%) –special-syms (43%)

–quiet (10%) –format (8%) -s (39%)
-u (6%) –no-recurse-limit (5%) -l (28%)
-A (4%) –size-sort (4%) –demangle (26%)
-D (3%) -D (4%) –defined-only (24%)

–format (3%) –defined-only (4%) –quiet (24%)
-s (3%) –no-demangle (4%) –format (24%)

–size-sort (2%) –radix (3%) -A (21%)

fuzzed options in ConfigFuzz-1, ConfigFuzz-2, and ConfigFuzz-max using AFL. We observe that
different options were fuzzed more frequently in these settings. Over the 24 hours fuzzing, the
frequently fuzzed options such as --target, -defined-only and -a continuously generated new
coverage, a potential reason why ConfigFuzz did not allocate more resources on other options. This
indicates that ConfigFuzz might not be the most efficient when handling the large program and
configuration space in nm.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

Fuzzing Configurations of Program Options 17

AFL and AFL++ produced different results on objdump (Figures 7c and 7d). Baseline-def had
the best performance using AFL with ConfigFuzz-max being the second. While using AFL++,
ConfigFuzz-2 was the best and Baseline-def was the second. First, unlike most other programs, the
coverage growth on objdump did not flatten after a few hours of fuzzing. This indicates that the
search space of this program is large and all fuzzers; even when only the default configuration
is fuzzed, the fuzzers continue discovering new coverage steadily over the 24 hours. Second, the
results in Figures 7c and 7d show that the effectiveness of ConfigFuzz also depends on the fuzzer.
Using AFL and AFL++, ConfigFuzz-2 performed significantly different, covering about 20000 and
90000 lines, respectively.

5.2.2 RQ2: How do ConfigFuzz-1, ConfigFuzz-2, and ConfigFuzz-max compare? Comparing the
performance of ConfigFuzz-1, ConfigFuzz-2, and ConfigFuzz-max in Figures 5 to 7, ConfigFuzz-max
did not always produce the highest coverage among these ConfigFuzz settings and ConfigFuzz-2
outperformed ConfigFuzz-1 in most cases. The performance of these ConfigFuzz settings was
impacted by two aspects of the configuration space of the target programs. First, there exist
interactions between two options, where some source code lines can only be reached by either
enabling both options, or enabling one and disabling the other. Second, some options cause longer
running time of the program execution, and when ConfigFuzz generates configurations including
such option(s), the fuzzing process will be slower.
On xmllint (Figures 5a and 5b), ConfigFuzz-2 covered 18% more lines than ConfigFuzz-1 in 24

hours (statistically significant through Mann-Whitney U test [15, 20]), which can be attributed to
option interactions. One of the options generated frequently by ConfigFuzz was --html. It interacts
with --push, --memory, --insert, --xlmout and --debugent and was the main reason why
ConfigFuzz-2 outperformed ConfigFuzz-1. Although ConfigFuzz-max outperformed ConfigFuzz-1,
it was worse than ConfigFuzz-2. This result indicates that while covering option interactions
may help improve the coverage, considering many option interactions may make ConfigFuzz less
effective.
In Figure 6e the coverages of ConfigFuzz-1 and ConfigFuzz-2 on gif2png are close. This is

because there is only one interaction in gif2png’s options by enabling -O and disabling -r, and the
interaction is associated with only a few unique lines.
On objdump, as discussed above, due to the large size of this program, the performance of

ConfigFuzz-1, ConfigFuzz-2, and ConfigFuzz-max varied significantly between AFL and AFL++.
ConfigFuzz-max covered more than 3 times the number of lines than that of ConfigFuzz-1 or
ConfigFuzz-2 using AFL, while ConfigFuzz-2 was the best when using AFL++. The performance
between ConfigFuzz-1 and ConfigFuzz-2 is not significantly different in other programs, in most
cases. Interestingly, ConfigFuzz-max in a few cases performed worse than both ConfigFuzz-1 and
ConfigFuzz-2. This is because ConfigFuzz-max was slowed down by including too many options
in its generated configurations. For example, on gif2png AFL ran about 11,000,000 executions with
ConfigFuzz-2 and about 6,800,000 executions with ConfigFuzz-max.

5.2.3 RQ3: How does ConfigFuzz perform on string options? For the four programs with string
options (FFmpeg, nm, objdump, and xmllint), we additionally fuzzed them including the string
options. Figures 8 and 9 show the coverage growth plots comparing ConfigFuzz-1 and ConfigFuzz-2
with ConfigFuzz-str-1 and ConfigFuzz-str-2 for these programs. Results of ConfigFuzz-1, ConfigFuzz-
2, ConfigFuzz-str-1 and ConfigFuzz-str-2 are represented by lines in blue, red, yellow and purple,
respectively.

For xmllint (Figures 8a and 8b), ConfigFuzz performed better with string options included in the
fuzzing space. ConfigFuzz-str-1 and ConfigFuzz-str-2 achieved higher coverage than ConfigFuzz-1
and ConfigFuzz-2 from early stage. At the end of 24 hours, fuzzing configurations with string

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

18 Zenong Zhang, George Klees, Eric Wang, Michael Hicks, and Shiyi Wei

(a) AFL-xmllint (b) AFL++-xmllint

(c) AFL-nm (d) AFL++-nm

Fig. 8. Line coverage growth plots on string options with ConfigFuzz including string options on xmllint and
nm.

options on xmllint resulted in more than 50% increase in line coverage. The string option -xpath

was frequently fuzzed and enabled ConfigFuzz to reach many unique lines. Also, this string option
was more frequently fuzzed by ConfigFuzz-str-2 than ConfigFuzz-str-1, as it was more likely to be
generated in a configuration with 2 options, compared to a configuration with a single option.
Adding the string options did not help ConfigFuzz improve the performance on nm. As shown

in Figures 8c and 8d, the coverages of ConfigFuzz-str-1 and ConfigFuzz-str-2 are similar to the
coverages of ConfigFuzz-1 and ConfigFuzz-2. The only string option --ifunc-chars in nmwas not
frequently fuzzed by ConfigFuzz-str-1 and ConfigFuzz-str-2. This is likely because --ifunc-chars
only controls 4 unique lines in nm and was quickly exploited by ConfigFuzz.

String options in objdump aremostly structured strings. For example, the --ctf and --ctf-parent
options take section names which are hard to be generated by ConfigFuzz. An exception is
--source-comment, which prefixes its setting to the source code lines. ConfigFuzz spent a lot of
resources on this option, but did not achieve higher coverage. In Figures 9a and 9b, ConfigFuzz-str-1
and ConfigFuzz-str-2 did not outperform ConfigFuzz-1 and ConfigFuzz-2.

FFmpeg has 12 string options and we set the max size of string setting to be 19 in this evaluation.
The implementation of ConfigFuzz enforced all options that are not bool type (23 in FFmpeg,
as shown in Table 5) to have the same size of setting bytes, meaning that there needs to be 460
setting bytes to represent these options. When the input data size is smaller than the configuration
bytes, ConfigFuzz will run the target program with the default configuration. ConfigFuzz-str-1 and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

Fuzzing Configurations of Program Options 19

(a) AFL-objdump (b) AFL++-objdump

(c) AFL-ffmpeg (d) AFL++-ffmpeg

Fig. 9. Line coverage growth plots on string options with ConfigFuzz including string options on objdump
and FFmpeg.

ConfigFuzz-str-2 were not able to generate large enough seeds during most of the fuzzing time,
resulting in their worse performance than ConfigFuzz-1 and ConfigFuzz-2.

5.3 Threats to Validity
A potential threat to validity is that we measure code coverage instead of ground-truth bugs when
comparing the fuzzers, which may not accurately measure the effectiveness of fuzzers [20]. To our
knowledge, there do not exist any ground-truth benchmarks that are suitable for evaluating fuzzers
that consider program configurations. It is future work to develop such benchmarks (e.g., based on
RevBugBench we recently developed [30] to allow fair comparison between fuzzers on programs
with configurations.

6 CONCLUSIONS & FUTUREWORK
In this paper, we present ConfigFuzz, an approach that enables fuzzing program options and
program input at the same time. A key idea of ConfigFuzz is to transform the target to take an
expanded input that encodes the program options, so existing fuzzers’ mutation operators can
be reused to fuzz program configurations. The options are specified by a grammar, and code
is generated and injected into the target to decode them from the expanded input; the option
encoding is designed to ensure that mutations are effective. ConfigFuzz’s design was motivated
by an empirical study that showed different configurations can have differing levels of impact

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

20 Zenong Zhang, George Klees, Eric Wang, Michael Hicks, and Shiyi Wei

on fuzzing code coverage. We integrated ConfigFuzz into FuzzBench in order to evaluate it. Our
experiments on six programs show that ConfigFuzz outperformed the baselines on four programs
while the results were mixed in the other two. We provided insights of these results through the
analysis of options fuzzed by ConfigFuzz. We also compared the performance of ConfigFuzz using
different parameters and including different options.
We identify several directions to explore in future work. First, as our empirical study shows,

the coverage achieved by fuzzing configurations is associated with the unique branches covered
by those configurations. While ConfigFuzz enables the fuzzers to allocate different resources on
different configurations, the allocation may be further augmented with static analysis of each
configuration. Second, fuzzing too many options together slows down the fuzzing process. Instead
of enforcing the number of options in a configuration generated by ConfigFuzz, there could be a
feedback loop adjusting the number of options in the generated configurations. Third, we observe
that ConfigFuzz was unable to efficiently fuzz large configuration space and may frequently fuzz
options that do not lead to the largest coverage. ConfigFuzz can be further improved by introducing
an exploration stage, in which all configurations are allocated the same resources in order to identify
the configurations that may lead to better performance.

ACKNOWLEDGEMENTS
This work was partly supported by NSF grants CCF-1816951, CCF-1955610, and CCF-2047682.

REFERENCES
[1] [n.d.]. AFL User Conversation. https://groups.google.com/g/afl-users/c/ZBWq0LdHBzw/m/zBlo7q9LBAAJ.
[2] [n.d.]. American Fuzzy Lop (AFL). https://lcamtuf.coredump.cx/afl/.
[3] [n.d.]. Automated Combinatorial Testing for Software (ACTS). https://www.nist.gov/programs-projects/automated-

combinatorial-testing-software-acts.
[4] [n.d.]. Clang: a C language family frontend for LLVM. https://clang.llvm.org/.
[5] [n.d.]. cxxfilt. https://sourceware.org/binutils/docs/binutils/c_002b_002bfilt.html.
[6] [n.d.]. FFmpeg. https://ffmpeg.org.
[7] [n.d.]. FuzzBench: Fuzzer Benchmarking As a Service. https://github.com/google/fuzzbench/.
[8] [n.d.]. Fuzzing with afl-fuzz. https://afl-1.readthedocs.io/en/latest/fuzzing.html.
[9] [n.d.]. gif2png. http://www.catb.org/esr/gif2png/.
[10] [n.d.]. llvm-cov. https://llvm.org/docs/CommandGuide/llvm-cov.html.
[11] [n.d.]. nm. https://sourceware.org/binutils/docs/binutils/nm.html.
[12] [n.d.]. objdump. https://sourceware.org/binutils/docs/binutils/objdump.html.
[13] [n.d.]. xmllint. http://xmlsoft.org/xmllint.html.
[14] [n.d.]. Z3 Issue #4461. https://github.com/Z3Prover/z3/issues/4461#issuecomment-633988515.
[15] Andrea Arcuri and Lionel Briand. 2011. A Practical Guide for Using Statistical Tests to Assess Randomized Algorithms

in Software Engineering. In Proceedings of the 33rd International Conference on Software Engineering (Waikiki, Honolulu,
HI, USA) (ICSE ’11). Association for Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/1985793.
1985795

[16] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-Based Greybox Fuzzing as Markov Chain.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 1032–1043. https://doi.org/10.1145/2976749.2978428

[17] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner C. Patton. 1997. The AETG System: An
Approach to Testing Based on Combinatorial Design. IEEE Trans. Softw. Eng. 23, 7 (July 1997), 437–444. https:
//doi.org/10.1109/32.605761

[18] Myra B. Cohen, Peter B. Gibbons, Warwick B. Mugridge, and Charles J. Colbourn. 2003. Constructing Test Suites for
Interaction Testing. In Proceedings of the 25th International Conference on Software Engineering (Portland, Oregon)
(ICSE ’03). IEEE Computer Society, USA, 38–48.

[19] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++ : Combining Incremental Steps
of Fuzzing Research. In 14th USENIX Workshop on Offensive Technologies (WOOT 20). USENIX Association. https:
//www.usenix.org/conference/woot20/presentation/fioraldi

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

https://groups.google.com/g/afl-users/c/ZBWq0LdHBzw/m/zBlo7q9LBAAJ
https://lcamtuf.coredump.cx/afl/
https://www.nist.gov/programs-projects/automated-combinatorial-testing-software-acts
https://www.nist.gov/programs-projects/automated-combinatorial-testing-software-acts
https://clang.llvm.org/
https://sourceware.org/binutils/docs/binutils/c_002b_002bfilt.html
https://ffmpeg.org
https://github.com/google/fuzzbench/
https://afl-1.readthedocs.io/en/latest/fuzzing.html
http://www.catb.org/esr/gif2png/
https://llvm.org/docs/CommandGuide/llvm-cov.html
https://sourceware.org/binutils/docs/binutils/nm.html
https://sourceware.org/binutils/docs/binutils/objdump.html
http://xmlsoft.org/xmllint.html
https://github.com/Z3Prover/z3/issues/4461#issuecomment-633988515
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1109/32.605761
https://doi.org/10.1109/32.605761
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi

Fuzzing Configurations of Program Options 21

[20] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018. Evaluating Fuzz Testing. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 2123–2138. https://doi.org/10.1145/3243734.3243804

[21] Ahcheong Lee, Irfan Ariq, Yunho Kim, and Moonzoo Kim. 2022. POWER: Program Option-Aware Fuzzer for High
Bug Detection Ability. In 2022 IEEE Conference on Software Testing, Verification and Validation (ICST). 220–231. https:
//doi.org/10.1109/ICST53961.2022.00032

[22] Austin Mordahl and Shiyi Wei. 2021. The Impact of Tool Configuration Spaces on the Evaluation of Configurable Taint
Analysis for Android. Association for Computing Machinery, New York, NY, USA, 466–477. https://doi.org/10.1145/
3460319.3464823

[23] Changhai Nie and Hareton Leung. 2011. A Survey of Combinatorial Testing. ACM Comput. Surv. 43, 2, Article 11 (Feb.
2011), 29 pages. https://doi.org/10.1145/1883612.1883618

[24] Jiwon Park, Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2021. Generative Type-Aware Mutation for Testing
SMT Solvers. Proc. ACM Program. Lang. 5, OOPSLA, Article 152 (oct 2021), 19 pages. https://doi.org/10.1145/3485529

[25] V. Pham,M. Bohme, A. E. Santosa, A. Caciulescu, and A. Roychoudhury. 2021. Smart Greybox Fuzzing. IEEE Transactions
on Software Engineering 47, 09 (sep 2021), 1980–1997. https://doi.org/10.1109/TSE.2019.2941681

[26] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. 2014. A Classification and Survey of
Analysis Strategies for Software Product Lines. ACM Comput. Surv. 47, 1, Article 6 (June 2014), 45 pages. https:
//doi.org/10.1145/2580950

[27] Zi Wang, Ben Liblit, and Thomas Reps. 2020. TOFU: Target-Oriented FUzzer. arXiv:cs.SE/2004.14375
[28] Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. On the Unusual Effectiveness of Type-Aware Operator

Mutations for Testing SMT Solvers. Proc. ACM Program. Lang. 4, OOPSLA, Article 193 (nov 2020), 25 pages. https:
//doi.org/10.1145/3428261

[29] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian Holler. 2021. Testing Configura-
tions. In The Fuzzing Book. CISPA Helmholtz Center for Information Security. https://www.fuzzingbook.org/html/
ConfigurationFuzzer.html Retrieved 2021-11-07 22:56:29+01:00.

[30] Zenong Zhang, Zach Patterson, Michael Hicks, and Shiyi Wei. 2022. FIXREVERTER: A Realistic Bug Injection
Methodology for Benchmarking Fuzz Testing. In 31st USENIX Security Symposium (USENIX Security 22). USENIX
Association, Boston, MA, 3699–3715. https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-
zenong

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2023.

https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1109/ICST53961.2022.00032
https://doi.org/10.1109/ICST53961.2022.00032
https://doi.org/10.1145/3460319.3464823
https://doi.org/10.1145/3460319.3464823
https://doi.org/10.1145/1883612.1883618
https://doi.org/10.1145/3485529
https://doi.org/10.1109/TSE.2019.2941681
https://doi.org/10.1145/2580950
https://doi.org/10.1145/2580950
http://arxiv.org/abs/cs.SE/2004.14375
https://doi.org/10.1145/3428261
https://doi.org/10.1145/3428261
https://www.fuzzingbook.org/html/ConfigurationFuzzer.html
https://www.fuzzingbook.org/html/ConfigurationFuzzer.html
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-zenong
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-zenong

	Abstract
	1 Introduction
	2 Related work
	3 How program configurations affect fuzzing performance?
	3.1 Study Setup
	3.2 Study Results

	4 ConfigFuzz
	4.1 Configuration Grammar
	4.2 Configuration Stub Generation
	4.3 Configuration Stub Injection

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results
	5.3 Threats to Validity

	6 Conclusions & Future Work
	References

